Які ж шляхи подальшого розвитку функціональної залежності, її сучасний стан; як розв'язуються питання онтологічного і субстанціонального статусів функції - ці проблеми завжди виникають навкруги будь-якого змістовного поняття. Приклад Дю-Буа-Раймонда, а також приклади Веєрштраса і Ван-дер-Вардена спонукали математиків до розгляду і більш загальних функцій, ніж безперервні або входять в класифікацію Бера. нерозуміння і недовір'я панувало в кругах старих консервативних математиків.
„ Я з жахом і огидою відвертаюся від цієї розростаючої язви Функцій, похідної”-, що не мають, писав Ерміт. Виникнення нових модних методів (теорія безлічі Кантора, теорія інтеграла і заходи Лебега) потягло за собою поява нових функціональних просторів і видів сходи-Мости. В роботах Діріхле, Пуассона, Жордана указуються класи функцій, для яких збіжність ряду Фур’є безумовно гарантована. Тригонометричні ряди виявляють цікаві властивості (явище Гиббса, принцип локалізації), нарешті „наводиться теорія” на диференціювання і інтеграцію тригонометричних рядів, що зустрічаються ще у Ейлера. Докторська дисертація Рімана намічає нові підходи до загальних тригонометричних рядів. Тонкі технічні методи дозволили Д.Е, Меньшову майже остаточно зшити питання про зображену функції тригонометричним рядом, а також просто єдиності.
В 1905 р. А. Лебег ввів поняття аналітично зображеної функції, як функції, значення якої виходять з аргументу і постійних величин при допомозі арифметичних операцій і граничних переходів. Приклад А. Лебега, вимірної функції, що не допускає згадане зображення, провів наЯ що коштує фурору.
Здавалося б беззмістовне за часів Ейлера і Д' Аламбера запитання що приписати як сума ряду, що розходиться, - одержав остаточний розвиток в роботах Пуассона, Рімана, Фейера. Ейлерові операції з розбіжними рядами знайшли своє обгрунтовування. Наполеону приписуються слова: „я спочатку завоюю цю землю, а потім знайдуться юристи, щоб обгрунтувати цей акт.” Н математиці відмова від строгих обгрунтовувань часто приводила до сильних результатам, не говорячи вже про пріоритет. Багато результатів Якобі носили бездоказовий характер, „для гаусової строгості у нас немає часу” - говорив він на лекції своїм студентам. Але Якобі випередив багато своїх сучасників, які згодом строге передоказали його результати.
„...в теперішній час математика менш ніж коли-небудь зводиться до чисто механічної гри з ізольованими формулами, біліше ніж коли-небудь інтуїція неподільно панує в генезисі відкриттів. „в той же час „зневага до розробки логічної основи нових теорій часто приводить до кустарництва. Взаємозв'язок інтуїтивного і логічного є необхідний момент в розвитку будь-якої галузі математики. Функції комплексного змінною були набагато більш детально вивчені, коли комплексні числа сталі інтерпретувати як точки площини; назад, комплексний аналіз лише тоді придбав постійну форму, коли став логічно спроможний. Вимоги логічної строгості і консистентності (повнота) основних положень теорії разом із строгим” правилами висновку є одним з критеріїв істинності теорії.
Основне питання в теорії рядів Фур’є - питання збіжності. Після Фур’є вся перші спроби дати строге доведення загальної теореми про збіжність тригонометричних рядів закінчилися невдачею. І, проте, доведення назрівало.
Недоліком існуючих робіт була відсутність точних формулювань умов, при яких указувалися теореми. Честь відкриття умов, що гарантували збіжність, як вже указувалося випалу Діріхле. Питання про те, наскільки повно дозволяє судити ряд Фур’є функції про її поведінку залишався відкритим. Леопольд Феєр своїм результатом про (С,1) - торб мируемости майже усюди ряду Фур’є до Функції, що породила його, показав, що ряд визначає функцію по модулю безлічі міри нуль, про те, що (С,1) сумування тут не можна замінити на звичайну збіжність було доведено в набагато більш пізній роботі А.Н. Колмогорова. Зусиллями Карлесона і Хантл питання про структурні властивості функцій з тими, що сходяться майже усюди рядами Фур’є одержало, мабуть, достатньо вичерпне рішення. Апарат що використовується в цих новітніх роботах, показує, наскільки глибоко розвивалась теорія тригонометричних рядів.
Приблизно до XIX століття математиків цікавили і питання опис субстанціональних об'єктів (числа, прямі, множини, функції і т.п.), питання про „реальне” існування таких об'єктів як, скажімо, ряд або послідовність. Прагнення виражати мовою логіки всі поняття математики з основних привело до переконання про необхідність не визначати деякі об'єкти.
„математики XIX сторіччя сталі потроху зміцнюватися в думці, що питання Ll значенні цих понять як субстанціональних об'єктів в рамках математики
і взагалі де б то не було) просто не має сенсу. Математичні твердження, в які входять ці терміни, відносяться не до фізичної реальності... Питання про те, „ніж насправді” є крапки, прямі і числа, не може і не повинна обговорювати математична наука. „ Звичайно ж математика повинна обговорювати питання про логічну спроможність тих або інших визначень, наприклад, визначення „кардинальне число безлічі всіх кардиналів” і т.п.; проблеми ж природи математичних абстракцій суть прерогатива філософії і вони є окремим випадком так званої проблеми „про онтологічний статус універсалій”. Вживання математичних методів повинне бути обмежено розумними межами. Відома критика Е. Маху, який в своїх роботах зводив всі зв'язки в природі до функціональних („в природі немає ні причини, ні слідства...”). З точки ж зору сучасної математики єство поняття функції полягає в способі відповідності між двома сортами об'єктів вельми загальної природи. Придбаваючи свою конкретну реалізацію в різних способах завдання (словесному, табличному, аналітичному, графічному) воно лише відображає істоту відповідності. Питання, пов'язані з бажанням знайти спосіб зображеної функції, що охоплює всі вказані способи, одержали достатньо вичерпне рішення завдяки апарату тригонометричних рядів.
Таким чином, виникнувши в різний час з потреб практики і потреб самої математики, пройшовши тривалий шлях розвитку від інтуїтивного рівня розуміння до розвиненого сучасного апарату, поняття функції і тригонометричного ряду виявилися вельми спорідненими і взаємозв'язаними.
1.2.4. Основні підходи використовування систем індикаторів для аналізу зовнішньополітичних процесів
Існуючі теорії зовнішньої політики так чи інакше засновані на використовуванні як початковий елемент деякої статистичної бази. Така база повинна грунтуватися на прийнятому порядку формування емпіричного матеріалу, тобто на виборі системи показників, що описують систему міжнародних відносин. Характерним прикладом послідовного вживання цієї ідеї в теорії зовнішньої політики є діяльність професора університету штату Огайо (США) Джеймс Розенау. Серед безлічі розрізнених чинників, що впливають на зовнішню політику, Д. Розенау виділяє п'ять груп змінних: індивідуальні чинники (якість, досвід, талант політичного діяча), ролеві фактори (чинники зовнішньої поведінки, обумовлені посадами політичних діячів), урядові чинники (що стосуються рамок функціонуючої урядової структури), суспільні змінні (основні цінності суспільства і т.п.), системні індикатори, або „зовнішні змінні”. Професор Ч. Л. Тейлор, організував спеціальну конференцію в 1978 р., присвячену розвитку теорії політичних індикаторів, за наслідками якої були опубліковані основні доповіді. В роботі П. Бекмана система індикаторів світової політики розглядається для дослідження поняття „могутності” („потужності”) держави, метою їх порівняльного розташовує. У вказаній роботі продовжені дослідження Р. Моргентау, До. Норра, О. Моргенштерна, що стосуються порівняння держав за системою індикаторів. Потужність держави по Бекману - це середнє арифметичне відсотка світової здобичі сталі досліджуваної держави і деякий! величини, що є твором індексу політичної стабільності і відсотка світового народонаселення. Макромоделі такого роду особливе характерні для робіт Мортона Каштана. Проблеми оптимальної поведінки (управління ідеології, що розглядаються в рамках, збереження державного „могутності мають зовнішню схожість із знаменитим „категоричним імперативом „І. Канта поступай так, щоб максима твого вчинку мислилася світовим законом.” М.1 Каплан „правила „ політичної поведінки формулює так: