1.2.3. Функціональні простори і проблема представлення залежності як суперпозиції елементарних
Розглядаючи політичні процеси і об'єкти як функції на безлічі політичних індикаторів, ми тим самим стаємо перед проблемою характеризації цих математичних об'єктів, знаходженні серед них основних, базових, з яких виходить безліч інших досліджуваних об'єктів. Інша виникаюча проблема - це проблема метрики, тобто, які об'єкти (функції) ми вважатимемо близькими (схожими), а які навпроти далекими, істотно тими, що розрізняються по своїх характеристиках.
У виникаючих моделях в системі міжнародних відносин разом з проблемою метрики (тобто, фактично характеризації виникаючих функціональних просторів) виникає проблема допустимості даних математичних абстракцій. Відомий парадокс Кантора, пов'язаний з категорією „безлічі взагалі всіх множин” приводить до нерозв'язної суперечності, вихід з якої, очевидно, тільки один - заборонити розгляд подібних конструкцій. Тим самим ставляться певні межі абстрагуванню. Це ж питання виникає при розгляді допустимої безлічі функцій, створюючи дані функціональні простори (ясно, що раз не можна розглядати „безліч узагалі всіх множин”, отже, не можна розглядати і характеристичну функцію цієї множини.
Проблема функціональної залежності, проте, багато складніше апорій Зенона. Кантора і т.п.
Інтуїтивне сприйняття функціональної залежності як прояв зв'язку явищ в різних модифікаціях властиве людству з давніх часів, математика протягом всієї історії свого розвитку тими або іншими засобами намагалася виразити цей зв'язок.
Починаючи з навчанням античних математиків про геометричні місця і складанням всіляких таблиць поняття функції зазнавало всі нові і нові зміни. Згадки про функціональну залежність зустрічаються у П. Ферма( 1636 р.), Р. Декарта (1637 р.), И. Барроу (1669 р.). Термін „функція” зобов'язаний своєю появою В. Лейбніцу(1692 р.). Так чи інакше поняття функції зв'язувалося з якимсь аналітичним виразом, задаючим її, Так у И. Бернуллі (1718 р.) „функція, це величина, складена із змінної і постійної”; у Л. Ейлера „функція змінної кількості є аналітичний вираз, складений яким-небудь чином з цієї змінної кількості, чисел або постійних кількостей”.
Перехід від інтуїтивного сприйняття функції до її більш менш схожому на сучасне визначення намітився в знаменитій суперечці про звучну струну.
В XVIII столітті, закінчивши вивчення систем з одним ступенем свободи, математики переходять до систем з декількома ступенями. В 1727 р. Іоганн Бернуллі, а в 1732-1736 рр. Данило Бернуллі і Леонард Ейлер розглядають тільки головні коливання навантаженої невагомої струни. Розглядаючи тільки головні коливання системи, ні Бернуллі, ні Ейлер не помітили, що у разі довільного руху справедливий принцип суперпозиції, тобто складання головних коливань, хоча теоретики музики (Рамо, наприклад, в 1726 р.) давно указували, що окрім основного тону музичного інструменту є ще і обертони. Існував навіть помилковий погляд, що головними коливаннями струни і вичерпуються всі можливі коливання системи (Тейлор, Д. Бернуллі).
Рішення задачі про струну, дане майже одночасно Д'Аламбером і Л. Ейлером (відповідно в 1747 і 1748 рр.) при зовні формальній схожості мали принципово різний зміст, що виражається в різному розумінні Функції. Якщо Д'Аламбер усюди під функцією розумів певний аналітичний вираз, то Ейлер, не відкидаючи це, допуску функції як відповідність за допомогою кривої, утвореної „вільним рухом руки”, або навіть Функції змішаного типу, тобто на одних ділянках один аналітичний вираз, на інших інше або навіть довільна крива.
Трапилося так, що розвиток конкретного матеріалу переріс рамки концепцій і точок зору, що склалися раніше, на основні поняття аналізу. Відсутність належної строгості в обгрунтовуванні накопичених результатів, настійні вимоги коштують практичних задач приводили до перегляду основ аналізу таких як „довільна крива”, „функція”, „інтеграл” і т.п. Губився органічний зв'язок між чистим і прикладним знанням, здорова рівновага між абстрактною спільністю і повнокровною конкретністю була порушена „...віддавшись справжній оргії інтуїтивних припущень, перемішуючи несуперечливі висновки з безглуздими, підлога у містично мі твердженнями, сліпи довіряючись надлюдській силі формальних процедур (математики) відкрили новий математичний світ, повний незчисленних багатств...”. Але вимоги евклідової строгості і внутрішньої естетики брали своє.
„в XIX сторіччі усвідомлення необхідності консолідувати науку, особливо) у зв'язку з потребами вищої освіти ... повело до ревізії основ математики з'ясуванню понять межі. Таким чином, XIX не тільки став епохою нових успіхів, але і був ознаменований плідним поверненням до класичного ідеалі точності і строгості доказів. „ Зараз, озираючись назад, важко дати об'єктивну оцінку позицій всіх сторін, що сперечаються, і аналіз всі XVIII труднощів, що стоять перед математиками, можна лише з певним ступенем упевненості сказати, що основне питання в полеміці Ейлера і Д'Аламбера було таким якщо відхилювати струну довільним чином, то чи існує формула, що дає її форму? Рішення цього питання немає ні у Ейлера і Д' Аламбера, ні в більш пізніх роботах Бернуллі і Лагранжа. Питання актуальне дотепер. „суперечка про звучну струну все ще триває, тільки, зрозуміло, вже зовсім в іншій науковій обстановці, іншими особами і в іншій термінології”. Безперервне поглиблення поняття функції і його еволюція продовжується і понині. Жодне формальне визначення, як пише Н.Н. Лузін, не може охопити всього зміст поняття функції, засвоїти яке можна лише прослідивши основні лінії розвитку, пов'язаного з розвитком природознавства, зокрема, математичної фізики. Нас цікавить, природно, таке питання: коли, на якому етапі свого розвитку поняття функції і тригонометричного ряду стикуються між собою! даючи могутній апарат аналітичного уявлення на додаток до служимо шему роками вірним і, мабуть, єдиним засобом аналітичного уявлення - апарату статечних рядів?
Тригонометричні ряди як такі мають свою історію, висхідну до Ейлеру. В листі до Гольдбаха в 1744 р. Ейлер наводить приклад розкладання:
одержуючи його методом статечних рядів. „поява вказаного ряду у Ейлере була справою чисто випадковим і в усякому разі нічого по суті для розуміння природи і характеру, а також можливості уявності довільних функцій тригонометричними рядами не давало. Ейлер тут стояв на чисто аналітичній точці зору.”5
Поява тригонометричних рядів у Ейлера, як рахує А.Б. Паплаускас має прикладний характер, а самі ряди були лише інструментом дослідження різних питань астрономії, зокрема, небесної механіки. Тому Ейлер і не піднімає питань обгрунтовування збіжності і розкладності. Узгодження на практиці одержаних результатів з дійсністю наштовхує Ейлера на інші розкладання. „часто говорять, що Ейлер... інстинктивно знаходив тільки правильні результати, хоча і слідуючи помилковим шляхом: але сказати це - значить дуже багато: математика перейшла до свого порядку денного через свої неправильні результати”.
Досліди із звучною струною з'явилися тим пробним, на якому перевірялася концепція Д. Бернуллі. Вони поколивали його первинну думку про існування тільки головних коливань, приводячи до відкриття принципу суперпозиції, д. Бернуллі знайшов, що найзагальніший рух струни описується виразом
Тут основний тон визначається першій складовій, їй відповідає період Т,=2 I/a, іншим відповідають періоди Т2=1/2Т1, і т.д. Рішення, повне фізичного змісту, перевірене експериментом і що узгоджується з миючими вченням про обертони, привело Д. Бернулли до переконання, що всі рішення Д’Аламбера і Ейлера охоплюються цим. Таким чином, виникнувши з прикладних задач тригонометричні ряди знаходили в практиці як своє непряме обгрунтовування, так і місце додатку.
Робота Бернуллі була піддана критиці як з боку Ейлера, так і з боку Д’Аламбера. Ніхто не вірив, що за допомогою тригонометричних рядів можна представляти будь-які функції, задані графічно. Позначалася відсутність чіткого поняття функції (у всіх були різні думки), і дуже сильно тиснув на все нове важкий вантаж аналітичного уявлення статечними рядами, що служили протягом років єдиним засобом аналітичного уявлення.
Свіжий струмінь вдихнув Лагранж, застосувавши новий, відкритий ним метод. Одержавши результат Бернуллі аналітичним чином і частина результатів Ейлера, він проте не зміг їх строго обгрунтувати, змішуючи поняття великого і бесконечного, дискретного і безперервного, не обгрунтовувавши постійні переходи до межі. Д'Аламбер критикував нестрогість міркувань Лагранжа, його тези „...ні одна людина, замінивши ряд 1 + х + х2 +... на 1/(1 -х ) ще не вчинив помилку”, „...природа не може зупинити викладень, оскільки фізично кутових крапок у струни немає, а завжди є той, що деяка закруглює, викликана жорсткістю струни”.
Лагранж майже дійшов до формул Фур’є, але так і не відкрив їх. В 1807 р. Французький математик і фізик Жан Батист Фур’є в роботах по аналітичній теорії тепла вказав, що зв'язні лінії, задані на кінцевих ділянках рівняннями, уявних на будь-якій такій ділянці тригонометричним рядом
Тим самим всі Ейлерові криві, накреслені вільним рухом руки, виявилися охопленими апаратом тригонометричних рядів. Згладилася невідповідність між уявленням про функціональну залежність і обмеженістю аналітичних засобів їх виразу. Відкриття Фур’є поставило крапку в багаторічній суперечці про струну і послужило великим поштовхом до подальшого розвитку поняття функції і аналізу в цілому.
Необхідно відзначити, що поява парових машин, різних систем і механізмів, пов'язаних з періодичними процесами, поставлена безліч практичних задач, непіддатливих рішенню старими методами, виявивши тим самим потребу у відповідному аналітичному апараті. Створення такого апарату, саме, апарату тригонометричних рядів в роботах Фур’є історично дав новий стимул в розвитку математики в цілому. Подальший розвиток цього апарату йшов по лінії додатків всередині самому математики.