Смекни!
smekni.com

Економіко-математичне моделювання в управлінні підприємством аграрно-промислового комплексу (стр. 3 из 12)

Отже, матеріальне моделювання може застосовуватися для аналізу економічних явищ в украй обмеженому об'ємі. На відміну від матеріального, ідеальне моделювання економічних процесів використовується широко і постійно. Теоретичні дослідження, направлені на вивчення економічних явищ, протягом довгого часу ґрунтувалися на неформалізованому моделюванні, яке залишалося головним і єдиним засобом аналізу. Поява формалізованих образних моделей, а потім і математичних моделей створило передумови для точного опису економічних явищ і їх строгого аналізу за допомогою методів математики і логіки.

Масове використання досягнень математики в гуманітарних науках, таких як економіка, соціологія, психологія, тільки починається. Лише у XX столітті з'явилися розділи математики, ведучі своє походження від проблем гуманітарних наук; найбільш відомий з них - теорія ігор. З кожним десятиліттям математика все глибше проникає в методи вивчення процесів, що відбуваються в людському суспільстві, і, треба думати, використання математичних моделей в гуманітарних науках знаходитиме все більш широке застосування.

Необхідно, проте, підкреслити, що на шляху проникнення математичних методів в гуманітарні науки, в економіку зокрема, зустрічаються об'єктивні труднощі, які і пояснюють той факт, що успіхи застосування математичного моделювання в економіці не такі великі, як хотілося б, особливо але порівнянню з природними павуками. Дослідження математичної моделі дає змогу діставати характеристики реального економічного об’єкта чи системи. Тип математичної моделі залежить як від природи системи, так і від задач дослідження. У загальному випадку математична модель системи містить опис множини можливих станів останньої та закон переходу з одного стану до іншого (закон функціонування).

Розглянемо основні типи економіко-математичних моделей, які класифікують за різними критеріями.

За цільовим призначенням економіко-математичні моделі поділяються на теоретико-аналітичні, застосовувані для дослідження загальних властивостей і закономірностей економічних процесів (наприклад, модель Кейнса), та прикладні, призначені для розв’язування конкретних економічних задач (моделі економічного аналізу, прогнозування, управління тощо).

Економіко-математичні моделі можуть бути призначені для дослідження як різних функціональних складових економіки (виробничо-технологічної, соціальної, територіальної структури), так і його окремих частин. Розглядають моделі всієї економіки в цілому та її підсистем - секторів, галузей, регіонів, комплексів моделей виробництва, споживання, формування та розподілу прибутків, трудових ресурсів, ціноутворення, фінансових зв’язків тощо.

Згідно із загальною класифікацією математичних моделей вони поділяються на функціональні та структурні, охоплюючи проміжні форми (структурно-функціональні). У дослідженнях на макрорівні найчастіше використовуються структурні моделі, оскільки для планування та управління велике значення мають взаємозв’язки підсистем. Типовими структурними моделями є моделі міжгалузевих зв’язків. Функціональні моделі широко застосовуються в економічному регулюванні, коли на поводження об’єкта ("вихід") впливають, змінюючи "вхід". Прикладом може бути модель поведінки споживачів за умов товарно-грошових відносин. Один і той самий об’єкт може описуватися водночас як структурною, так і функціональною моделлю.

За характером відображення причинно-наслідкових зв’язків розрізняють детерміновані моделі та моделі, що враховують випадковість і невизначеність - стохастичні.

Залежно від урахування часового чинника економіко-математичні моделі поділяються на статичні та динамічні. У статичних моделях усі залежності стосуються одного моменту або періоду часу. Динамічні моделі характеризують зміни економічних процесів у часі.

За тривалістю періоду часу, що розглядається, розрізняють моделі короткострокового (до року), середньострокового (до 5 років), довгострокового (10-15 і більше років) прогнозування та планування. Час в економіко-математичних моделях може змінюватися безперервно або дискретно. Тому розрізняють неперервні та дискретні моделі

Моделі економічних процесів надзвичайно різноманітні за формою математичних залежностей. У загальному випадку виокремлюють лінійні та нелінійні моделі. Особливо важливим є клас лінійних моделей, найзручніших для аналізу й розрахунків, завдяки чому вони набули великого поширення.

Відмінності між лінійними та нелінійними моделями істотні не лише з математичного, а й з теоретико-економічного погляду. Адже численні залежності в економіці як на макро-, так і на мікро-рівні мають принципово нелінійний характер: вплив податкової та грошово-кредитної політики на економічних суб’єктів, ефективність використання ресурсів з розширенням виробництва, зміна обладнання, моделі управління запасами тощо. Теорія "лінійної економіки" істотно відрізняється від теорії "нелінійної економіки". Від того, якими - опуклими чи не опуклими - вважаються множини виробничих можливостей підсистем (галузей, підприємств), істотно залежать висновки про можливості поєднання централізованого планування та господарської самостійності економічних підсистем.

За співвідношенням екзогенних і ендогенних змінних, які включаються до моделей, останні поділяють на відкриті і замкнені. Повністю відкритих моделей не існує; модель повинна мати хоча б одну ендогенну змінну. Повністю замкненими (такими, що не містять жодної екзогенної змінної) економіко-математичні моделі бувають надзвичайно рідко. Загалом економіко-математичні моделі різняться за ступенем відкритості.

Макроекономічні моделі поділяють на агреговані та деталізовані. Залежно від того, чи містять ці моделі просторові чинники та умови, чи ні, розрізняють моделі просторові та точкові.

Отже, загальна класифікація економіко-математичних моделей охоплює понад десять основних ознак. З розвитком економіко-математичних досліджень проблема класифікації застосовуваних моделей дедалі ускладнюється. Поряд з появою нових типів моделей (особливо мішаних типів) і нових ознак їх класифікації відбувається інтеграція моделей різних типів у складніші модельні конструкції.

Розглянемо основні етапи економіко-математичного моделювання. Процес моделювання передбачає наявність трьох структурних елементів:

об’єкта дослідження;

суб’єкта (дослідник);

модель, яка опосередковує відносини між суб’єктом і об’єктом.

Побудова економіко-математичних моделей у загальному випадку складається з розглянутих далі етапів.

1.2 Етапи побудови економіко-математичних моделей

1. Постановка економічної проблеми та її якісний аналіз. Головне - чітко сформулювати сутність проблеми (цілі дослідження), припущення, які приймаються, і ті питання, на які необхідно одержати відповіді. Цей етап включає виокремлення найважливіших рис і властивостей об'єкта, що моделюється, і абстрагування від другорядних; вивчення структури об'єкта і головних залежностей, що поєднують його елементи; формулювання гіпотез, що пояснюють поведінку і розвиток об'єкта.

2. Побудова математичних моделей. Це - етап формалізації економічної проблеми, вираження її у вигляді конкретних математичних залежностей і відношень (функцій, рівнянь, нерівностей тощо). Спочатку зазвичай визначається основна конструкція (тип) математичної моделі, а потім уточнюються деталі цієї конструкції (конкретний перелік змінних і параметрів, форма зв'язків). Однак надмірна складність і деталізованість моделі утруднює процес дослідження. Однією з важливих особливостей математичних моделей є потенційна можливість їх використання для вирішення різноманітних проблем. Тому, навіть зустрічаючись з новою економічною задачею спочатку необхідно спробувати застосувати для розв'язання цієї задачі вже відомі моделі (адаптувати їх до задачі). У процесі побудови моделі здійснюється зіставлення двох систем наукових знань - економічних і математичних. Треба прагнути до того, щоб одержати модель, яка належить до добре вивченого класу математичних задач (напр. шляхом деякого спрощення вихідних положень моделі), Однак можлива й така ситуація, коли формалізація економічної проблеми приводить до невідомої раніше математичної структури.

3. Математичний аналіз моделі. Метою цього етапу є з'ясування загальних властивостей моделі. Найважливіший момент доведення існування рішень у сформованій моделі (теорема існування). Якщо математична задача не має рішення, то необхідність у наступній роботі відпадає; слід скоригувати чи постановку економічної задачі, чи модифікувати її математичну формалізацію. Аналітичне дослідження моделі порівняно з емпіричним (числовим) має ту перевагу, що одержувані висновки зберігають свою силу за різноманітних конкретних значень зовнішніх і внутрішніх параметрів моделі. І все-таки моделі складних економічних об'єктів з великими труднощами піддаються аналітичному дослідженню. У тих випадках, коли аналітичними методами не вдається з'ясувати загальні властивості моделі, а спрощення моделі спричиняється до недопустимих (неадекватних) результатів, переходять до числових методів дослідження.