Смекни!
smekni.com

Економіко-математичне моделювання в управлінні підприємством аграрно-промислового комплексу (стр. 11 из 12)

Розрахунок запишемо у таблицю:

Y1p x3 u z (u - Uc) ^2 (z - Zc) ^2 1 * 2 L2
1 561,91 3996 0,00178 0,0003 0,0000004 0,0000000 0,0000000 -0,0004
2 1757, 19 5930 0,00057 0,0002 0,0000003 0,0000000 0,0000001 0,0069
3 2003,29 7980 0,00050 0,0001 0,0000004 0,0000000 0,0000001 0,0117
4 2534, 19 10539 0,00039 0,0001 0,0000006 0,0000000 0,0000001 0,0167
5 706,51 1256 0,00142 0,0008 0,0000001 0,0000003 0,0000001 0,0191
6 1001,00 5952 0,00100 0,0002 0,0000000 0,0000000 0,0000000 0,0019
7 1783,90 16759 0,00056 0,0001 0,0000004 0,0000000 0,0000001 0,0160
8 1382,90 8374 0,00072 0,0001 0,0000002 0,0000000 0,0000001 0,0081
9 5134,99 14275 0,00019 0,0001 0,0000009 0,0000000 0,0000002 0,0244
10 1954,29 12708 0,00051 0,0001 0,0000004 0,0000000 0,0000001 0,0156
11 3770,48 12184 0,00027 0,0001 0,0000008 0,0000000 0,0000002 0,0211
12 897,21 4446 0,00111 0,0002 0,0000000 0,0000000 0,0000000 0,0002
13 1792,49 6244 0,00056 0,0002 0,0000004 0,0000000 0,0000001 0,0078
14 146,77 821 0,00681 0,0012 0,0000320 0,0000009 0,0000054 0,7468
15 1028,31 4961 0,00097 0,0002 0,0000000 0,0000000 0,0000000 0,0013
Сума 26455,43 116425 0,01737 0,0038 0,0000369 0,0000014 0,0000065 0,8971

Визначаємо середні значення:

=0,001;
=0,0002

Знаходимо середнє квадратичне відхилення.

=0,001;
=0,0003.

Обчислюємо коефіцієнт регресії для


;

Обчислюємо параметри моделей:

и

Тоді модель має вигляд:

Далі з U і Z проробляємо ту ж операцію і обчислюваний А3 і.

.

Якщо з

обчислимо:

Або

То

і

Тому:

и

=1155,12;
=1326,73

Тепер вважаємо, що А3 обчислили неточно і обчислимо прогнозні значення: розрахунок зводимо у таблицю.

alfa betta A3 k3 Y2p
1 -0,00184 0,001159 863,178 -1,5897 561,6884
2 0,03507 0,001149 870,236 30,5215 1766,2379
3 0,05903 0,001143 874,878 51,6403 2016,2583
4 0,08450 0,001137 879,869 74,3493 2552,0671
5 0,09665 0,001133 882,270 85,2742 754,4809
6 0,00954 0,001156 865,342 8,2553 1002,3925
7 0,08072 0,001137 879,124 70,9620 1791,4501
8 0,04074 0,001148 871,330 35,4992 1388,7602
9 0,12321 0,001127 887,563 109,3548 5174,3257
10 0,07880 0,001138 878,747 69,2434 1964,9379
11 0,10675 0,001131 884,275 94,3979 3799,6962
12 0,00089 0,001158 863,697 0,7706 897,3631
13 0,03927 0,001148 871,046 34, 2049 1802,3084
14 3,77803 0,000196 5090,546 19232,2519 3584,8920
15 0,00681 0,001156 864,823 5,8919 1029,5265
Сума 4,53817 0,016216 17326,924 19901,0275 30086,3853

Третя зміна за ступенем зменшення коефіцієнта парної кореляції - х1.

Залишимо позначення змінних U і Z такими ж, але значення цих змінних будуть іншими.

Наші розрахунки запишемо у таблицю:

Y2p x1 u z (u - Uc) ^2 (z - Zc) ^2 1 * 2 L2
1 561,68845 965 0,00178 0,0010 0,0000011 0,0000007 0,0000009 0,5743
2 1766,2379 15108 0,00057 0,0001 0,0000000 0,0000000 0,0000000 0,0150
3 2016,2583 4522 0,00050 0,0002 0,0000000 0,0000000 0,0000000 -0,0003
4 2552,0671 22603 0,00039 0,0000 0,0000001 0,0000000 0,0000001 0,0372
5 754,48086 6538 0,00133 0,0002 0,0000004 0,0000000 0,0000000 -0,0266
6 1002,3925 7875 0,00100 0,0001 0,0000001 0,0000000 0,0000000 -0,0172
7 1791,4501 15441 0,00056 0,0001 0,0000000 0,0000000 0,0000000 0,0159
8 1388,7602 4265 0,00072 0,0002 0,0000000 0,0000000 0,0000000 0,0001
9 5174,3257 48371 0,00019 0,0000 0,0000003 0,0000000 0,0000001 0,0682
10 1964,9379 3637 0,00051 0,0003 0,0000000 0,0000000 0,0000000 -0,0076
11 3799,6962 6182 0,00026 0,0002 0,0000002 0,0000000 0,0000000 0,0170
12 897,36311 4027 0,00111 0,0002 0,0000002 0,0000000 0,0000000 0,0077
13 1802,3084 14921 0,00055 0,0001 0,0000000 0,0000000 0,0000000 0,0160
14 3584,892 3864 0,00028 0,0003 0,0000002 0,0000000 0,0000000 -0,0115
15 1029,5265 3273 0,00097 0,0003 0,0000001 0,0000000 0,0000000 0,0147
Су 30086,385 161592 0,01072 0,0033 0,0000027 0,0000008 0,0000011 0,7029

З наших попередніх розрахунків видно що модель

має вигляд

Проводимо ти ж самі розрахунки що і раніше і отримуємо:

=1449,71;
=164,92.

Вважаємо що А1 обчислений неточно і обчислимо прогнозні значення:

Обчисливши значення

,
,
,…,
, ми можемо тепер визначити точне значення А.

Його можна визначити двома способами.

Перший спосіб: за допомогою формули

другий


Краще визначати другим методом (середньогеометричним) він простіший так як розрахунок проводиться через логарифм.

Тоді

=3,16

=1442,41

Після всіх розрахунків прогнозна модель буде мати вигляд.

Розрахунок прогнозу зручно привести у вигляді таблиці.

Прогноз на майбутній період
1 449,103
2 1431,395
3 1433,385
4 1426,226
5 1364,577
6 1448,334
7 1432,550
8 1436,269
9 1426,146
10 1442,187
11 1421,300
12 1435,146
13 1430,615
14 20,313
15 1424,414

3.2 Комп’ютерна реалізація методу Брандона

Системні вимоги.

Мінімальним системними вимогами є: Microsoft Excel 2000, що функціонує під керуванням операційних систем Windows 98/ME/NT/2000/XP.

Опис програмних засобів

Щоб провести свої розрахунки за методом Брандона я використовував комп'ютер, Microsoft Office Excel 2003 і VISUAL BASIC for Applications.

Розрахунок методом Брандона складається з декількох операцій. При запуску файлу Brandon. xls на екрані з'явиться головне вікно (рисунок 3.1.1)

Рисунок 3.1.1 Головне вікно.

На рисунку 3.1.1 вказані показники і фактори економіко-математичні моделі за допомогою яких буде відбуватися прогнозування. Кнопка "Початкові дані" дозволяє перейти у наступне вікно програми для введення вхідної статистики.