Смекни!
smekni.com

Выборочные исследования в эконометрике (стр. 6 из 6)

Допустимое расхождение

между частотами нетрудно получить расчетным путем. Для этого достаточно воспользоваться формулой для статистики Q и определить, при каком максимальном расхождении частот все еще делается вывод о том, что верна гипотеза однородности. Следовательно,допустимое расхождение
находится из уравнения

Таким образом,

Для данных примера

= 1,96
0,029 = 0,057, или 5,7%, для уровня значимости 0,05. .

Для других уровней значимости надо использовать другие коэффициенты

Так, K(0,01) = 2,58 для уровня значимости 1% и K(0,10) = 1,64 для уровня значимости 10%. Для данных примера
= 2,58
0,029 = = 0,7482
0,075, или 7,5%, для уровня значимости 0,01. Если округлить до ближайшего целого числа процентов, то получим 7%, как при использовании таблицы 7 выше.

Анализ таблиц 7 и 8 показывает, что для констатации различия частоты должны отличаться не менее чем на 6%, а при некоторых объемах выборок - более чем на 10%, при объемах выборок 100 и 100 - на 19%. Если частоты отличаются на 5% или менее, можно сразу сказать, что эконометрический анализ приведет к выводу о том, что различие не обнаружено (для выборок объемов не более 750).

В связи с этим возникает вопрос: каково типовое отличие частот в двух выборках из одной и той же совокупности? Разность частот в этом случае имеет нулевое математическое ожидание и дисперсию

Величина р(1-р) достигает максимума при р=1/2, и этот максимум равен 1/4. Если р=1/2, а объемы двух выборок совпадают и равны 500, то дисперсия разности частот равна

Следовательно, среднее квадратического отклонение

равно 0,032, или 3,2%. Поскольку для стандартной нормальной случайной величины в 50% случаев ее значение не превосходит по модулю 0,67 (а в 50% случаев - больше 0,67), то типовой разброс равен 0,67
, а в рассматриваемом случае- 2,1%. Приведенные соображения дают метод контроля за правильностью проведения повторных опросов. Если частоты излишне устойчивы, это подозрительно!

Литература

1. Сэндидж Ч., Фрайбургер В., Ротцолл К. Реклама: теория и практика: Пер. с англ. - М.: Прогресс, 1989. - 630 с.

2. Ядов В.А. Стратегии и методы качественного анализа данных. - Журнал "Социология: методология, методы, математические модели", 1991, No.1, с.14-31.

3. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. - М.: Наука, 1983. - - 416 с.

4. Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. - 296 с.

5. Опыт применения ЭВМ в социологических исследованиях. - М.: Институт социологических исследований АН СССР, Советская социологическая ассоциация, 1977. - 158 с.

6. Орлов А.И. Общий взгляд на статистику объектов нечисловой природы. - В сб.: Анализ нечисловой информации в социологических исследованиях (научные редакторы: В.Г. Андреенков, А.И.Орлов, Ю.Н.Толстова). - М.: Наука, 1985. // С.58-92.