Смекни!
smekni.com

Временные характеристики и функция времени. Графическое представление частотных характеристик (стр. 3 из 3)

Декада – отрезок логарифмической оси частот между произвольным значением частоты и в десять раз большим значением:

.

При графическом изображении логарифмических характеристик придерживаются некоторых правил. Точка, соответствующая нулевому значению частоты лежит слева в бесконечности, т.к. lg0 = -¥. Поэтому ось ординат проводится через любую точку оси частот так, чтобы справа располагалась та часть ЛЧХ, которую нужно исследовать, а слева – для описания которой достаточно качественных характеристик. Слева обычно остается та часть фазовой характеристики, которая мало отличается от нуля (или другого постоянного значения). То же самое можно сказать и о коэффициенте наклона амплитудной характеристики. Слева обычно оставляют ту часть амплитудной характеристики, коэффициент наклона которой мало отличается от нулевого значения (или другого постоянного значения.

Амплитудную и фазовую характеристики изображают на одном рисунке с общей осью частот. Ось частот разбивается на декады и, может быть, октавы, причем каждая декада разбивается на октавы отдельно. Для удобства под точками этой оси принято записывать не значения логарифмов частот, а значения самих частот. Обе характеристики имеют общую ось ординат, но две разные разметки: в децибелах для амплитудной характеристики и в радианах (или градусах) для фазовой.

Удобство логарифмических характеристик заключается в возможности простого определения амплитудных характеристик последовательного соединения звеньев и спрямления амплитудных характеристик, как будет показано ниже.

Передаточная функция последовательного соединения звеньев равна произведению передаточных функций соединяемых звеньев. Поэтому

.

Вместе с тем

.

Определим отсюда выражение логарифмических характеристик последовательного соединения звеньев:

,

Таким образом, логарифмические характеристики последовательного соединения складываются. Это относится как к амплитудным, так и к фазовым характеристикам.

На рисунке 2 в качестве примера изображены логарифмические характеристики (диаграммы Боде) системы с передаточной функцией


Рисунок 2 - Логарифмические частотные характеристики (ЛЧХ)


ЛИТЕРАТУРА

1. Мирошник И.В. Теория автоматического управления. Линейные системы. - СПб.: Питер, 2005.

2. Филлипс Ч., Харбор Р. Системы управления с обратной связью. М.: Лаборатория Базовых Знаний, 2001.

3. Методы классической и современной теории автоматического управления в 3-х т. Т.1: Анализ и статистическая динамика систем автоматического управления / Под ред. Н.Д. Егупова. – Изд. МГТУ им. Н.Э. Баумана, 2000.