Смекни!
smekni.com

Балансовый метод планирования (стр. 4 из 5)

Для получения прибыли равной 7840 ед. стоимости необходимо включить в план продукцию первого и третьего вида в количествах:

В1 = 905 ед.;

В3 = 50 ед.,

При этом остались недоиспользованные ресурсы в количествах:

А3 = 1390 ед.

А4 = 165 ед.


Задача 3

Для откорма группы животных на ферме необходимо наличие в ежедневном рационе не менее как В1, единиц питательных веществ В2 и т.д. – не менее как Вm. Указанные питательные вещества содержатся в n разных кормовых продуктах, которые можно закупить.

Составить такой ежедневный кормовой рацион, при котором будет удовлетворена потребность в питательных и затраты на откорм будут минимальны.

Питательные вещества Кормовые продукты Суточная необходимостьВi = В0 + n1
В1 В2 В3 В4
А1 1 2 2 1 64 + 9
А2 0 3 1 1 39 + 9
А3 2 1 0 3 35 + 9
Стоимость 1 кг кормов 2 1 3 4

Составить математическую модель и решить ЗЛП.

Решение

Введем переменные:

х1 – количество кормового продукта В1

х2 – количество кормового продукта В2

х3 – количество кормового продукта В3

х4 – количество кормового продукта В4

Строим математическую модель:

Fmах = 2х1 + х2 + 3х3 + 4х4

при условиях:


х1 + 2х2 + 2х3 + х4 ≥ 155;

2 + х3 + х4 ≥ 130;

1 + х2 + 3х4 ≥ 126;

хj ≥ 0; j = 1,4.

Приведем систему ограничений к каноническому виду:

х1 + 2х2 + 2х3 + х4 – х5 = 155;

2 + х3 + х4 – х6 = 130;

1 + х2 + 3х4 – х7 = 126;

хj ≥ 0; j = 1,7.

Приведем систему ограничений к виду удобному для решения:

х1 + 2х2 + 2х3 + х4 – х5 + х8 = 155;

2 + х3 + х4 – х6 + х9 = 130;

1 + х2 + 3х4 – х7 + х10 = 126;

хj ≥ 0; j = 1,10.

Переменные х8, х9, х10 являются искусственными и они введены на знак «=», поэтому для корректировки задачи эти переменные вводят в целевую функцию с коэффициентом +М.

Fmin = 2х1 + х2 + 3х3 + 4х4 + Мх8 + Мх9 + Мх10.

Задача решается модифицированным симплекс-методом (метод искусственного базиса).


№о/п
Ба-зис С bi С1=2 С2=1 С3=3 С4=4 С5=0 С6=0 С7=0 С8=М С9=М С10=М
Х1 Х2 Х3 Х4 Х5 Х6 Х7 Х8 Х9 Х10
х8 М 155 1 2 2 1 -1 0 0 1 0 0
х9 М 130 0 <3> 1 1 0 -1 0 0 1 0
х10 М 126 2 1 0 3 0 0 -1 0 0 1
Fj - Сj 0 -2 -1 -3 -4 0 0 0 0 0 0
М 411 3 6 3 5 -1 -1 -1 0 0 0
х8 М
1 0 4/3 1/3 -1 2/3 0 1 0
х2 1
0 1 1/3 1/3 0 -1/3 0 0 0
х10 0
<2> 0 -1/3 8/3 0 1/3 -1 0 1
Fj - Сj
-2 0 -8/3 -
0 -1/3 0 0 0
М 151 3 0 1 3 -1 1 -1 0 0
х8 М 27 0 0 <
>
-1 -1 1/2 1/2 1
х2 1
0 1 1/3 1/3 0 -1/3 0 0
х1 2
1 0 -1/6 4/3 0 1/6 -1/2 0
Fj - Сj 126 0 0 -3 -1 0 0 -1 0
М 27 0 0 3/2 -1 -1 1/2 1/2 0
х3 3 18 0 0 1 -2/3 -2/3 1/3
<1/3>
х2 1
0 1 0 5/9 2/9 -4/9 -1/9
х1 2
1 0 0 11/9 -1/9 2/9 -4/9
Fj - Сj 180 0 0 0 -3 -2 1 0
х6 0 54 0 0 3 -2 -2 1 1
х2 1
0 1 4/3 -1/3 -2/3 0 1/3
х1 2
1 0 -2/3 5/3 1/3 0 -2/3
Fj - Сj 126 0 0 -3 -1 0 0 -1

Каждый опорный план проверяем на оптимальность.

В 5-м опорном плане в индексной строке все разности Fj - Сj ≤ 0, следовательно этот план является оптимальным (F→min).

Можно записать ответ:

Fmin = 126 ед.стоимости,

Хопт = (97/3 = 32,33; 184/3 = 61,33; 0; 0; 0; 54).

Для получения минимальной себестоимости на изготовление кормовой продукции равной 126 ед. ст. необходимо включить в план кормовые продукты 1-го В1 = 32,33 ед. и второго вида В2 = 61,33 ед. и остались недоиспользованы ресурсы по А3 в количестве 54 ед.


Задача 4

С четырех карьеров к трем керамическим заводам перевозят глину.

Карьеры Керамические заводы Мощность карьераВj = Воj + n
В1 В2 В3
А1 15 6 12 45 + 9
А2 4 6 8 38 + 9
А3 24 21 5 23 + 9
А4 12 9 12 84
Вj + Воj + n 70 + 9 65 + 9 55 + 9 190 + 3*9

Сделать математическую постановку задачи и спланировать перевозку глины на керамические заводы так, чтобы транспортные затраты были минимальны.

Решение

Данная задача относится к типу транспортных задач линейного программирования и её математическая модель в сокращенной форме записи будет выглядеть так:

mn

Smin =

Σ Σ CijХij,

i=1 j=1

при условиях по ресурсам:

n

Σхij = Аi,, i = 1,m

j=1

m

Σхij = Вj, j = 1,n

i=1

хij ≥ 0; i = 1,m; j = 1,n.


Существует два вида моделей:

mn

закрытая ΣАi= Σ Вj;

i=1 j=1

mn

открытая ΣАi≠ Σ Вj.

i=1 j=1

Если в условии задачи дана открытая модель, то её нужно привести к закрытой, путем введения фиктивного поставщика или потребителя с нулевыми стоимостями перевозок, но ноль считается как максимально большое число. Закрытую модель можно решить методом потенциалов.

Проверяем в данной задаче тип модели:

Σ Аi = 217; Σ Вj = 217.

Строим первый опорный план по правилу минимального элемента:

Поставщики Потребители U
В1 = 79 В2 = 74 В3 = 64
А1 = 54 1532- ρ 622 + ρ 12 U1 = 0
А2 = 47 447 6 8 U2 = -11
А3 = 32 24 21 532 U3 = -4
А4 = 84 12+ρ 952-ρ 1232 U4 = 3
V V1 = 15 V2 = 6 V3 = 9 Smin = 1812

Далее делается проверка системы ограничений: