Смекни!
smekni.com

Аппарат теории двойственности для экономико-математического анализа. Анализ одномерного временного ряда (стр. 3 из 3)

;

Критические значения d‑статистики для a=0,05 и n=9 составляют: d1=0,82; d2=1,32. Так как выполняется условие

,

то нет достаточных оснований сделать тот или иной вывод о выполнении свойства независимости. Проверим независимость остатков по коэффициенту автокорреляции первого порядка, который равен (см. прил. 4):

.

Для расчета коэффициента автокорреляции использовалось выражение, составленное из встроенных функций EXCEL:

Критическое значение коэффициента автокорреляции для a=0,05 и n=9 составляет 0,666. Так как коэффициент автокорреляции не превышает по абсолютной величине критическое значение, то это указывает на отсутствие автокорреляции в ряде динамики. Следовательно, модель по этому критерию адекватна.

Проверим равенство нулю математического ожидания уровней ряда остатков. Среднее значение остатков равно нулю:

(определено с помощью встроенной функции «СРЗНАЧ»; см. прил. 4). Поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

Нормальный закон распределения остатков проверяем с помощью R/S-критерия, определяемого по формуле


,

где emax; emin- наибольший и наименьший остатки соответственно (определялись с помощью встроенных функций «МАКС» и «МИН»);

- стандартное отклонение ряда остатков (определено с помощью встроенной функции «СТАНДОТКЛОН»; см. прил. 4).

Критические границы R/S-критерия для a=0,05 и n=9 имеют значения: (R/S)1=2,7 и (R/S)2=3,7. Так как R/S-критерий попадает в интервал между критическими границами, то ряд остатков признается соответствующим нормальному закону распределения вероятностей. Модель по этому критерию адекватна.

Таким образом, выполняются все пункты проверки адекватности модели: модель признается адекватной исследуемому процессу.

Оценим адекватность построенной модели Брауна:

с параметром сглаживания
(см. таблица 2):

Таблица 2 - Анализ ряда остатков модели Брауна

Проверяемое свойство Используемые статистики Граница Вывод
наименование значение нижняя верхняя
Независимость d–критерий Дарбина-Уотсонаr(1)-коэффициент автокорреляции d=2,79
-0,44
0,82 1,320,666 Нельзя сделать вывод по этому критериюr(1)<0,666адекватна
Случайность Критерий пиков (поворотных точек) 6>2 2 адекватна
Нормальность RS-критерий R/S=
2,7 3,7 неадекватна
Мат.ожидание≈0 t-статистика Стьюдента
2,306 адекватна
Вывод: модель статистически неадекватна

5. Оценим точность линейной модели на основе использования средней относительной ошибки аппроксимации.

Среднюю относительную ошибку аппроксимации находим по формуле:

%

Значение Eотн показывает, что предсказанные моделью значения спроса на кредитные ресурсы отличаются от фактических значений в среднем на 2,57 %. Модель имеет хорошую точность.

Оценим точность модели Брауна с параметром сглаживания

:

Модель Брауна также имеет хорошую точность, однако она несколько ниже, чем у линейной трендовой модели.

6. Строим точечный и интервальный прогнозы спроса на 1 и 2 недели вперед для линейной модели:

Прогноз на 1 неделю вперед (период упреждения k=1):

1) Точечный прогноз

:

млн. руб.

Среднее прогнозируемое значение спроса равно 64,5 млн. руб.

2) Интервальный прогноз


с надежностью (доверительной вероятностью) g=0,7. необходимые расчеты приведены в таблице 3:

млн. руб.,

где tтаб=1,083 - табличное значение t-критерия Стьюдента для доверительной вероятности g=0,7.

С вероятностью 70 % фактическое значение спроса на кредитные ресурсы будет находиться в интервале от 62,13 до 66,87 млн. руб.

Таблица 3

t yt
1 43 16
2 47 9
3 50 4
4 48 1
5 54 0
6 57 1
7 61 4
8 59 9
9 65 16
Среднее 5 - 60

Прогноз на 2 недели вперед (период упреждения k=2):

1) Точечный прогноз:

млн. руб.

Среднее прогнозируемое значение спроса равно 66,8 млн. руб.

2) Интервальный прогноз с надежностью g=0,7:

млн. руб.,

С вероятностью 70 % фактическое значение спроса на кредитные ресурсы будет находиться в интервале от 64,29 до 69,31 млн. руб.

Построим прогноз для модели Брауна на следующие 2 недели. Параметры модели, полученные для последнего уровня временного ряда (т. е. для t=n=9), используются для построения прогноза спроса по формуле:

.

Прогноз на 1 неделю вперед (период упреждения k=1):

млн. руб.

С вероятностью 70 % значение спроса на кредитные ресурсы будет находиться в интервале от 63,213 до 70,361 млн. руб.

Прогноз на 2 недели вперед (период упреждения k=2):

млн. руб.

Значение спроса на кредитные ресурсы будет находиться в интервале от 65,603 до 73,167 млн. руб.

7. График временного ряда спроса строим с помощью надстройки «Диаграмма» EXCEL. Предварительно выделяется блок ячеек «t» и «yt» вместе с заголовками, а затем выбирается пункт меню «Вставка» «Диаграмма…»:

Далее строим линию линейного тренда (меню «Диаграмма» ® «Добавить линию тренда…» ® «Линейная»), и устанавливаем «Прогноз» вперед на 2 единицы и назад на 1 единицу, а также вывод на диаграмме уравнения тренда и коэффициента детерминации R2.