Смекни!
smekni.com

Анализ рядов распределения (стр. 4 из 6)

Таблица 5 - Распределение рабочих по среднечасовой выработке.

№п/п Рабочие 4-го разряда №п/п Рабочие 5-го разряда
Выработкарабочего, шт.,
Выработкарабочего, шт.,
123456 799101213 7-10=-39-10=-11023 911049 1234 14141517 14-15=-1102 1104
60 - 24 S 60 - 6

В данном примере рабочие разделены на две группы по факторному признаку х- квалификации, которая характеризуется их разрядом. Результативный признак

- выработка - варьируется как под его влиянием (межгрупповая вариация), так и за счет других случайных факторов (внутригрупповая вариация). Задача заключается в измерении этих вариаций с помощью трех дисперсий: общей, межгрупповой и внутригрупповой.

Определяем групповые и общую средние выработки, шт:

по первой группе

шт.,

по второй группе

шт.,

по двум группам

шт.

Рассчитываем и заносим в таблицу

и
.

Рассчитываем внутригрупповые дисперсии:

по первой группе

,

по второй группе

Внутригрупповые дисперсии показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (состояние оборудования, обеспеченность материалами и инструментами, возраст рабочих и т.д.), кроме различий в квалификации, т.к внутри группы все рабочие имеют одинаковый разряд.

Вычисляем среднюю из внутригрупповых дисперсий:

Средняя дисперсия отражает вариацию выработки, обусловленную всеми факторами, кроме квалификации, но в среднем по совокупности.

Межгрупповая дисперсия, характеризует вариацию среднегрупповых выработок, вызванную различием групп рабочих по квалификационному разряду:

Вычисляем общую дисперсию совокупности, которая отражает суммарное влияние всех возможных факторов на общую вариацию выработки изделий всеми рабочими:

Определяем общую дисперсию по правилу сложения дисперсий:

Очевидно, что чем выше доля межгрупповой дисперсии

в общей дисперсии
, тем сильнее влияние факторного признака (разряда) на результативный (выработку).

Эта доля характеризуется эмпирическим коэффициентом детерминации:

Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х. Остальная часть общей вариации у вызвана изменением прочих факторов.

В примере эмпирический коэффициент детерминации равен:

или 66,7%,

Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% - влиянием прочих факторов.

Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:

Эмпирическое корреляционное отношение

, как и
, может принимать значения от 0 до 1.

Если связь отсутствует, то

=0. В этом случае
=0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак - фактор не влияет на образование общей вариации.

Если связь функциональная, то

=1. В этом случае дисперсия групповых средних равна общей дисперсии (
), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.

Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.

Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.

0 0-0,2 0,2-0,3 0,3-0,5 0,5-0,7 0,7-0,9 0,9-0,99 1
Сила связи отсутствует очень слабая слабая умеренная заметная тесная весьма тесная функцио-нальная

В примере

, что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.

2.2 Относительные характеристики вариации

При сравнении вариации различных признаков или одного признака в различных совокупностях, используют относительные характеристики вариации - коэффициенты вариации.

Коэффициенты вариации рассчитываются как отношение абсолютных характеристик вариации (R,d,s) к центру распределения и часто выражаются процентами. Линейный коэффициент вариации:

. Квадратичный коэффициент вариации:
. Коэффициент осциляции:

Квадратичный коэффициент вариации используют как критерий однородности совокупности. Совокупность считается однородной, если

Если центр распределения представлен медианой, то используют квартильный коэффициент вариации:

3. Теоретические кривые распределения

В вариационных рядах распределения существует определенная связь между изменением частот и значения варьирующего признака: частоты с ростом значения признака сначала увеличиваются, а затем после достижения какой-то максимальной величины в середине ряда уменьшаются. Значит, частоты в рядах изменяются закономерно в связи с изменением варьирующего признака. Такого рода закономерные изменения частот в вариационных рядах называются закономерностями распределения.

Анализ вариационных рядов предполагает выявление такой закономерности распределения, определение ее типа и построение теоретической кривой распределения, характеризующей данный тип распределения. Под кривой распределения понимают графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариант. Эмпирической (фактической) кривой распределения является полигон. Под теоретическим распределением понимают вероятностное распределение частот в наблюдаемом вариационном ряду.

В практике статистического исследования встречаются распределения: нормальное, логарифмическое, биноминальное, Пуассона и др.

3.1 Нормальное распределение

При построении статистических моделей наиболее часто применяется нормальное распределение. Распределение непрерывной случайной величины х называют нормальным, если описывается следующей кривой:

где

- ордината кривой нормального распределения (частости);

е=2,7182 - основание натурального логарифма;

p=3,1415 - постоянное число:

- нормированное отклонение.

Кривая нормального распределения симметрична относительно

, поэтому величину
называют центром распределения. На ее вид влияют значения
и s. Чем больше s при неизменной
, тем более плоской и растянутой вдоль оси абсцисс становится кривая, и наоборот.