Таблица 5 - Распределение рабочих по среднечасовой выработке.
№п/п | Рабочие 4-го разряда | №п/п | Рабочие 5-го разряда | ||||
Выработкарабочего, шт., | | | Выработкарабочего, шт., | | | ||
123456 | 799101213 | 7-10=-39-10=-11023 | 911049 | 1234 | 14141517 | 14-15=-1102 | 1104 |
| 60 | - | 24 | S | 60 | - | 6 |
В данном примере рабочие разделены на две группы по факторному признаку х- квалификации, которая характеризуется их разрядом. Результативный признак
Определяем групповые и общую средние выработки, шт:
по первой группе
по второй группе
по двум группам
Рассчитываем и заносим в таблицу
Рассчитываем внутригрупповые дисперсии:
по первой группе
по второй группе
Внутригрупповые дисперсии показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (состояние оборудования, обеспеченность материалами и инструментами, возраст рабочих и т.д.), кроме различий в квалификации, т.к внутри группы все рабочие имеют одинаковый разряд.
Вычисляем среднюю из внутригрупповых дисперсий:
Средняя дисперсия отражает вариацию выработки, обусловленную всеми факторами, кроме квалификации, но в среднем по совокупности.
Межгрупповая дисперсия, характеризует вариацию среднегрупповых выработок, вызванную различием групп рабочих по квалификационному разряду:
Вычисляем общую дисперсию совокупности, которая отражает суммарное влияние всех возможных факторов на общую вариацию выработки изделий всеми рабочими:
Определяем общую дисперсию по правилу сложения дисперсий:
Очевидно, что чем выше доля межгрупповой дисперсии
Эта доля характеризуется эмпирическим коэффициентом детерминации:
Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х. Остальная часть общей вариации у вызвана изменением прочих факторов.
В примере эмпирический коэффициент детерминации равен:
Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% - влиянием прочих факторов.
Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:
Эмпирическое корреляционное отношение
Если связь отсутствует, то
Если связь функциональная, то
Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.
| 0 | 0-0,2 | 0,2-0,3 | 0,3-0,5 | 0,5-0,7 | 0,7-0,9 | 0,9-0,99 | 1 |
Сила связи | отсутствует | очень слабая | слабая | умеренная | заметная | тесная | весьма тесная | функцио-нальная |
В примере
При сравнении вариации различных признаков или одного признака в различных совокупностях, используют относительные характеристики вариации - коэффициенты вариации.
Коэффициенты вариации рассчитываются как отношение абсолютных характеристик вариации (R,d,s) к центру распределения и часто выражаются процентами. Линейный коэффициент вариации:
Квадратичный коэффициент вариации используют как критерий однородности совокупности. Совокупность считается однородной, если
Если центр распределения представлен медианой, то используют квартильный коэффициент вариации:
В вариационных рядах распределения существует определенная связь между изменением частот и значения варьирующего признака: частоты с ростом значения признака сначала увеличиваются, а затем после достижения какой-то максимальной величины в середине ряда уменьшаются. Значит, частоты в рядах изменяются закономерно в связи с изменением варьирующего признака. Такого рода закономерные изменения частот в вариационных рядах называются закономерностями распределения.
Анализ вариационных рядов предполагает выявление такой закономерности распределения, определение ее типа и построение теоретической кривой распределения, характеризующей данный тип распределения. Под кривой распределения понимают графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариант. Эмпирической (фактической) кривой распределения является полигон. Под теоретическим распределением понимают вероятностное распределение частот в наблюдаемом вариационном ряду.
В практике статистического исследования встречаются распределения: нормальное, логарифмическое, биноминальное, Пуассона и др.
При построении статистических моделей наиболее часто применяется нормальное распределение. Распределение непрерывной случайной величины х называют нормальным, если описывается следующей кривой:
где
е=2,7182 - основание натурального логарифма;
p=3,1415 - постоянное число:
Кривая нормального распределения симметрична относительно