Смекни!
smekni.com

Экономическое планирование методами математической статистики (стр. 4 из 6)


3.2Регрессионный анализ.

Для построения математической модели выдвинем гипотезу о наличии линейной зависимости между прибылью (иначе Y) и факторами на нее влияющими (Х1, Х2, Х3, Х4, Х5). Следовательно, математическая модель может быть описана уравнением вида:

, (3.1)

где

- линейно-независимые постоянные коэффициенты.

Для их отыскания применим множественный регрессионный анализ. Результаты регрессии сведены в таблицы 3.2 – 3.4.

Таблица 3.2.-Регрессионная статистика.

Множественный R 0,609479083
R-квадрат 0,371464753
Нормированный R-квадрат 0,161953004
Стандартная ошибка 24,46839969
Наблюдения 21

Таблица 3.3. –Дисперсионная таблица.

Степени свободы SS MS F Значимость F
Регрессия 5 5307,504428 1061,500886 1,773002013 0,179049934
Остаток 15 8980,538753 598,7025835
Итого 20 14288,04318

Таблица 3.4– Коэффициенты регрессии.

Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95% Нижние 95,0% Верхние 95,0%
B0 38,950215 35,7610264 1,0891805 0,29326 -37,272 115,173 -37,2726 115,173
B1 4,5371110 8,42440677 0,5385674 0,59808 -13,419 22,4933 -13,4190 22,4933
B2 1,8305781 8,73999438 0,2094484 0,83691 -16,798 20,4594 -16,7982 20,4594
B3 23,645979 27,4788285 0,8605162 0,40304 -34,923 82,2157 -34,9237 82,2157
B4 -0,526248 0,28793074 -1,827690 0,08755 -1,1399 0,08746 -1,13995 0,08746
B5 -10,780037 4,95649626 -2,174931 0,04604 -21,344 -0,21550 -21,3445 -0,21550

Таким образом, уравнение, описывающее математическую модель, приобретает вид:

Y=4,53711108952303*X1+1,830578196*X2+23,64597929*X3- 0,526248308*X5-10,78003746*X5+38,95021506. (3.2)

Для оценки влияния каждого из факторов на результирующую математическую модель применим метод множественной линейной регрессии к нормированным значениям переменных

, результаты пересчета коэффициентов приведены в таблице 3.5.

Таблица 3.5.Оценка влияния факторов.

Коэффициенты Стандартная ошибка t-статистика
Y-пересечение 38,95021506 35,76102644 1,089180567
Переменная X 1 3,828821785 7,109270974 0,538567428
Переменная X 2 1,348658856 6,439097143 0,209448441
Переменная X 3 5,367118917 6,237091662 0,86051628
Переменная X 4 -12,43702261 6,804774783 -1,827690556
Переменная X 5 -12,96551745 5,961346518 -2,174931018

Коэффициенты в таблице 3.5 показывают степень влияния каждой из переменных на результат (Y). Чем больше коэффициент, тем сильнее прямая зависимость (отрицательные коэффициенты показывают обратную зависимость).

F-критерий из таблицы 3.3 показывает степень адекватности полученной математической модели.

ВЫВОДЫ

В результате проведенной работы был произведен статистический анализ исходных данных, полученных при исследовании основных показателей деятельности предприятия, с целью выявления доминирующих факторов влияющих на прибыль и построена адекватная математическая модель и спрогнозирована прибыль на последующие периоды.

В процессе выполнения работы изучили и научились применять на практике следующие методы математической статистики:

- линейный регрессионный анализ,

- множественный регрессионный анализ,

- корреляционный анализ,

- проверка стационарности и независимости выборок,

- выявление тренда,

- критерий

.

Перечень ссылок

1. Бендод Дж., Пирсол А. Прикладной анализ случайных данных: Пер. с англ. – М.: Мир, 1989.

2. Математическая статистика. Под ред. А. М. Длина, М.: Высшая школа, 1975.

3. Л.Н.Большев, Н.В.Смирнов. Таблицы математической статистики.-М.: Наука, 1983.

4. Н.Дрейпер, Г.Смит. Прикладной регрессионный анализ. Пер. с англ.- М.: Статистика, 1973.


Вероятностные ряды ID

Месяц 1994 1996 1997 1998
Январь 1500000 1650000 1400000 1700000
Февраль 900000 850000 890000 1200000
Март 700000 600000 550000 459000
Апрель 300000 125000 250000 221000
Май 400000 300000 100000 1000
Июнь 250000 450000 150000 250000
Июль 200000 600000 132000 325000
Август 150000 750000 142000 354000
Сентябрь 300000 300000 254000 150000
Октябрь 250000 259000 350000 100000
Ноябрь 400000 453000 450000 259000
Декабрь 2000000 1700000 1000000 1900000

Регрессионный анализ ID

Прибыль Коэффициент качества продукции Доля в общем объеме продаж Розничная цена Коэффициент издержек на 1 продукции Удовлетворение условий розничных торговцев
Y, % X1 X2 X3 X4 X5
1 1,99 1,22 1,24 1,3 35,19 2,08
2 12,21 1,45 1,54 1,04 80 1,09
3 23,07 1,9 1,31 1 23,31 2,28
4 24,14 2,53 1,36 1,64 80 1,44
5 35,05 3,41 2,65 1,19 80 1,75
6 36,87 1,96 1,63 1,26 68,84 1,54
7 4,7 2,71 1,66 1,28 80 0,47
8 58,45 1,76 1,4 1,42 30,32 2,51
9 59,55 2,09 2,61 1,65 80 2,81
10 61,42 1,1 2,42 1,24 32,94 0,59
11 61,51 3,62 3,5 1,09 28,56 0,64
12 61,95 3,53 1,29 1,29 78,75 1,73
13 71,24 2,09 2,44 1,65 38,63 1,83
14 71,45 1,54 2,6 1,19 48,67 0,76
15 81,88 2,41 2,11 1,64 40,83 0,14
16 10,08 3,64 2,06 1,46 80 3,53
17 10,25 2,61 1,85 1,59 80 2,13
18 10,81 2,62 2,28 1,57 80 3,86
19 11,09 3,29 4,07 1,78 80 1,28
20 12,64 1,24 1,84 1,38 31,2 4,25
21 12,92 1,37 1,9 1,55 29,49 3,98
Среднее по столбцу Среднее по столбцу Среднее по столбцу Среднее по столбцу Среднее по столбцу Среднее по столбцу
M(X) 34,91761905 2,29 2,083809524 1,390952381 57,46333333 1,937619048
Дисперсия по столбцу Дисперсия по столбцу Дисперсия по столбцу Дисперсия по столбцу Дисперсия по столбцу Дисперсия по столбцу
D(X) 714,402159 0,71215 0,542784762 0,051519048 558,5363233 1,446569048
S2 26,72830258 0,843889803 0,736739277 0,226978077 23,63337308 1,202733989
Ковариционная матрица
Y X1 X2 X3 X4 X5
Y 680,3830086 0,214214286 4,18483288 -0,066102494 -189,5780492 -13,53461519
X1 0,214214286 0,678238095 0,226847619 0,026757143 10,04216667 -0,127428571
X2 4,18483288 0,226847619 0,516937868 0,039539229 1,061201587 -0,170019501
X3 -0,066102494 0,026757143 0,039539229 0,04906576 1,29965873 0,068287982
X4 -189,5780492 10,04216667 1,061201587 1,29965873 531,9393556 -1,12405873
X5 -13,53461519 -0,127428571 -0,170019501 0,068287982 -1,12405873 1,377684807
Отклонение от среднего Отклонение от среднего Отклонение от среднего Отклонение от среднего Отклонение от среднего Отклонение от среднего
Y X1 X2 X3 X4 X5
-32,92761905 -1,07 -0,843809524 -0,090952381 -22,27333333 0,142380952
-22,70761905 -0,84 -0,543809524 -0,350952381 22,53666667 -0,847619048
-11,84761905 -0,39 -0,773809524 -0,390952381 -34,15333333 0,342380952
-10,77761905 0,24 -0,723809524 0,249047619 22,53666667 -0,497619048
0,132380952 1,12 0,566190476 -0,200952381 22,53666667 -0,187619048
1,952380952 -0,33 -0,453809524 -0,130952381 11,37666667 -0,397619048
-30,21761905 0,42 -0,423809524 -0,110952381 22,53666667 -1,467619048
23,53238095 -0,53 -0,683809524 0,029047619 -27,14333333 0,572380952
24,63238095 -0,2 0,526190476 0,259047619 22,53666667 0,872380952
26,50238095 -1,19 0,336190476 -0,150952381 -24,52333333 -1,347619048
26,59238095 1,33 1,416190476 -0,300952381 -28,90333333 -1,297619048
27,03238095 1,24 -0,793809524 -0,100952381 21,28666667 -0,207619048
36,32238095 -0,2 0,356190476 0,259047619 -18,83333333 -0,107619048
36,53238095 -0,75 0,516190476 -0,200952381 -8,793333333 -1,177619048
46,96238095 0,12 0,026190476 0,249047619 -16,63333333 -1,797619048
-24,83761905 1,35 -0,023809524 0,069047619 22,53666667 1,592380952
-24,66761905 0,32 -0,233809524 0,199047619 22,53666667 0,192380952
-24,10761905 0,33 0,196190476 0,179047619 22,53666667 1,922380952
-23,82761905 1 1,986190476 0,389047619 22,53666667 -0,657619048
-22,27761905 -1,05 -0,243809524 -0,010952381 -26,26333333 2,312380952
-21,99761905 -0,92 -0,183809524 0,159047619 -27,97333333 2,042380952
Погрешность Погрешность Погрешность Погрешность Погрешность Погрешность
-2,84217E-14 0 -9,10383E-15 0 4,26326E-14 -5,32907E-15
Квадраты отклонений от среднего Квадраты отклонений от среднего Квадраты отклонений от среднего Квадраты отклонений от среднего Квадраты отклонений от среднего Квадраты отклонений от среднего
Y X1 X2 X3 X4 X5
1084,228096 1,1449 0,712014512 0,008272336 496,1013778 0,020272336
515,6359628 0,7056 0,295728798 0,123167574 507,9013444 0,71845805
140,3660771 0,1521 0,598781179 0,152843764 1166,450178 0,117224717
116,1570723 0,0576 0,523900227 0,062024717 507,9013444 0,247624717
0,017524717 1,2544 0,320571655 0,040381859 507,9013444 0,035200907
3,811791383 0,1089 0,205943084 0,017148526 129,4285444 0,158100907
913,1045009 0,1764 0,179614512 0,012310431 507,9013444 2,153905669
553,7729533 0,2809 0,467595465 0,000843764 736,7605444 0,327619955
606,7541914 0,04 0,276876417 0,067105669 507,9013444 0,761048526
702,3761961 1,4161 0,113024036 0,022786621 601,3938778 1,816077098
707,1547247 1,7689 2,005595465 0,090572336 835,4026778 1,683815193
730,74962 1,5376 0,63013356 0,010191383 453,1221778 0,043105669
1319,315358 0,04 0,126871655 0,067105669 354,6944444 0,011581859
1334,614858 0,5625 0,266452608 0,040381859 77,32271111 1,386786621
2205,465225 0,0144 0,000685941 0,062024717 276,6677778 3,23143424
616,90732 1,8225 0,000566893 0,004767574 507,9013444 2,535677098
608,4914295 0,1024 0,054666893 0,039619955 507,9013444 0,037010431
581,1772961 0,1089 0,038490703 0,03205805 507,9013444 3,695548526
567,7554295 1 3,944952608 0,15135805 507,9013444 0,432462812
496,2923104 1,1025 0,059443084 0,000119955 689,7626778 5,347105669
483,8952438 0,8464 0,033785941 0,025296145 782,5073778 4,171319955
Дисперсия по столбцу Дисперсия по столбцу Дисперсия по столбцу Дисперсия по столбцу Дисперсия по столбцу Дисперсия по столбцу
714,402159 0,71215 0,542784762 0,051519048 558,5363233 1,446569048

Кореляционная матрица
Y X1 X2 X3 X4 X5
Y R 0,952380952 0,009497107 0,212516628 -0,010895886 -0,300117251 -0,421022155
V 8,30379958 0,042473629 0,965111718 -0,048729813 -1,384789996 -2,007692777
X1 R 0,009497107 0,952380952 0,364867065 0,139691534 0,503519129 -0,125548489
V 0,042473629 8,30379958 1,710542787 0,628831315 2,477605293 -0,564448173
X2 R 0,212516628 0,364867065 0,952380952 0,236445177 0,060947845 -0,191873647
V 0,965111718 1,710542787 8,30379958 1,077808965 0,272905301 -0,868854214
X3 R -0,010895886 0,139691534 0,236445177 0,952380952 0,242281194 0,250144398
V -0,048729813 0,628831315 1,077808965 8,30379958 1,105494772 1,142929664
X4 R -0,300117251 0,503519129 0,060947845 0,242281194 0,952380952 -0,039545194
V -1,384789996 2,477605293 0,272905301 1,105494772 8,30379958 -0,176943758
X5 R -0,421022155 -0,125548489 -0,191873647 0,250144398 -0,039545194 0,952380952
V -2,007692777 -0,564448173 -0,868854214 1,142929664 -0,176943758 8,30379958
Область принятия гипотезы -1,96 1,96

Регрессия