Смекни!
smekni.com

Решение многокритериальной задачи линейного програмирования (стр. 2 из 3)

2.2. Графическое определение p-множества

Сначала необходимо построить график.

Для построения графика необходимы следующие данные:

исходные данные:

L1 = x1 - 2x2 + 2,

L2 = x1 + x2 + 4,

L3 = -x1 + 4x2 - 20,

в каноническом виде (после подстановки точки (5;3))

d1 = x1 - 2x2 + 1, (5 - 2*3 + 1= 1)

Dxkd2 = x1 + x2 - 8, (5 + 3 + 4 = 12)

d3 = -x1 + 4x2 - 7, (-5 + 4*3 - 20 = -13)

D = 2x1 + 4x2 – 14,

Находим точки для построения прямых:

1) d1 = x1- 2x2 + 1,

-x1 + 2x2£ 1 (1;1)

2) d2 = x1 + x2 - 8,

x1 + x2 ³8 (0;8)

3) d3 = -x1 + 4x2 - 7,

-x1 + 4x2³7 (1;2)

По полученным точкам строим график (рисунок 1). На рисунке штриховкой показан полученный д-конус. Переход к любой точке внутри конуса обеспечивает увеличение всех критериев. Точка (29/3; 16/3) является p-оптимальным решением. Смещая точку х, внутрь д-конуса придем на границу e1. При этом д-конус выйдет из области допустимых решений (ОДР) Dx. Теперь полученная точка не сможет улучшить ни один ч-критерий без ухудшения других, значит она p-оптимальная. Построив д-конус в любой точке стороны e1, убеждаемся, что каждая из точек p-оптимальна, значит вся сторона e1 составляет p-множество.


3.Определение Парето-оптимального множества

с-методом

3.1.Удаление пассивных ограничений

Перед построением p-множества из системы ограничений должны быть удалены пассивные ограничения. Пассивным будем называть неравенство (п-неравенство), граница которого не является частью границ области Dx, за исключением, может быть, ее отдельной точки. Неравенства, образующие границы Dx, назовем активными (а-неравенства).

Чтобы грани не были включены в Dxp, не имея никакого отношения к Dxp, неравенство e1 должно быть удалено из исходной системы ограничений. Условием для исключения неравенства ei³ 0 из системы является несовместность (или вырожденность) данной системы неравенств при условии ei = 0. Геометрически это означает, что граница ei = 0 неравенства ei³ 0 не пересекается с областью Dx или имеет одну общую точку. Если граница ei = 0 имеет общую угловую точку с Dx (вырожденность), то с удалением п-неравенства ei³ 0 эта точка не будет утеряна, так как она входит в границы других неравенств. Помимо заданных m неравенств проверке подлежат и n условий неотрицательности переменных, так как координатные плоскости (оси) также могут входить в границы Dx.

В качестве примечания можно отметить, что поскольку п-неравенства (пассивные неравенства) для любой точки xÎDx будут выполнены, то по мере выявления п-неравенств и введения их в базис они удаляются из с-таблицы.

Запишем систему неравенств Dx в форме с-таблицы:

Т1 х1 х2 1 bi/ais bi/ais
e1 -1 -1 15 15 15
e2 5 1 -1 1/5 1
e3 1 -1 5 - 5
e4 0 -1 20 - 20
Т2 e1 x2 1 Т2 x1 e2 1
х1 -1 -1 15 e1 4 -1 14
e2 -5 -4 74 x2 -5 1 1
e3 -1 -2 20 e3 2 -1 4
e4 0 -1 20 e4 1 -1 19

ОП – получен, следовательно ОП – получен, следовательно

х2 и e1 – активные ограничения; x1 и e2 – активные ограничения;

из Т2 получаем:

Т3 e1 e3 1
x1 1 1/2 5
e2 -3 2 34
x2 -1/2 -1/2 10
e4 2 ½ 10

отсюда делаем вывод, что e3 – активное ограничение;

из Т3 получаем:

Т4 e4 e3 1
x1 10
e2 19
x2 15/2
e1 -5

Опорный план не получен, следовательно e4 – пассивное ограничение.


3.2.Определение p-множества с-методом.

При подготовке решения для ЛПР интерес будет представлять информация обо всем множестве p-оптимальных (эффективных) решений Dxp. Графический метод позволяет сформулировать довольно простой подход к определению множества Dxp. Суть этого подхода в следующем. Решая усеченную задачу линейного программирования, устанавливаем факт существования д-конуса ( Dmax > 0). Поскольку для линейных ЦФ конфигурация д-конуса не зависит от положения его вершины х,, то, помещая ее на границу ei области Dx, решаем усеченную ЗЛП с добавлением ei, соответствующего i-му участку границ Dx. Вырождение д-конуса в точку х, будет признаком p-оптимальности и всех других точек данной грани. С помощью с-метода указанная процедура легко проделывается для пространства любой размерности n. Неудобство указанного метода состоит в том, что потребуется на каждой грани ОДР Dx найти точку х, (по числу граней Dx) сформулировать и решить столько же ЗЛП размера Rxn.

Существенно сократить объем вычислений можно путем выбора вершины д-конуса в фиксированной точке х, = (1)nи в нее же параллельно себе перенести грани, составляющие границы Dx

Приведенные к точке х, = (1)n приращения d-r и невязки ei запишутся в виде:

где черта сверху у d, e и D означает, что эти величины приведены к точке х, = (1)n.

По существу, (8) – ЗЛП размера (R+m)xn (D®max), аее решение позволит найти все грани, составляющие p-множество Dxp.

Составляем с-таблицу, не учитывая пассивные ограничения, т.е e1:


Т1 х1 х2 1
e2 -1 -1 2
e3 5 1 -6
e4 1 -1 0
х1 1 0 -1
х2 0 1 -1
d1 1 -2 1
d2 1 1 -2
d3 -1 4 -3
D 1 3 -4

В начале решается усеченная ЗЛП (под чертой):

Т2 х1 d1 1
e1 -3/2 1/2 3/2
e2 11/2 -1/2 -11/2
e3 1/2 1/2 -1/2
х1 1 0 -1
х2 1/2 -1/2 -1/2
x2 1/2 -1/2 1/2
d2 3/2 -1/2 -3/2
d3 1 -2 -1
D 5/2 -3/2 -5/2
Т3 d3 d1 1
e1 -3/2 -5/2 0
e2 11/2 21/2 0
e3 1/2 3/2 0
х1 1 2 0
х2 1/2 1/2 0
x2 1/2 1/2 1
d2 3/2 5/2 0
x1 1 2 1
D 5/2 7/2 0
Т4 e1 d1 1
d3 0
x2 1
d2 0
x1 1
D -5/3 -2/3 0

e1ÎDxp, так как Dmax= 0.

Данный метод построения множества Dxp обладает недостатком, связанным с разрушением области допустимых решений (ОДР) Dxпри переносе ее граней в х,. Действительно, вершины области Dx в преобразованной модели никак не отражены, а именно одна из них может составить p-множество в случае его совпадения с оптимальным решением. Такое совпадение возможно, если все ч-критерии достигают максимум на одной вершине. Физически это значит, что они слабопротиворечивы – угол при вершине д-конуса приближается к 180° (градиенты ч-критериев имеют практически совпадающие направления). Данный случай имеет место, если в p-множество не вошла ни одна из граней ОДР Dx. Следовательно, p-множество совпадает с оптимальным решением. Для определения p-множества решается обычная ЗЛП с одним из ч-критериев. Если при этом получено множество оптимальных решений, то решается ЗЛП с другим ч-критерием. Пересечение оптимальных решений и является p-множеством. Для ЛПР указание на то, что некоторая грань ei = eipÎDxpp-оптимальна, является только обобщенной информацией.