Смекни!
smekni.com

Построение экономической модели c использованием симплекс-метода (стр. 5 из 10)

Например, для анализа работоспособности бытового телевизора необходимо проверить входы (шнур электропитания, антенну, ручки управления и настройки) и выходы (экран кинескопа и выходные динамики); системное описание какого-либо производственного процесса необходимо начинать с анализа его информационного и материального входов и выходов - планируемых и результирующих показателей деятельности, качество входных ресурсов и конечных продуктов и т.д.


Рис. 1.7

Следует отметить, что существует множество систем, внутреннее устройство которых невозможно либо нецелесообразно описывать, и в этом случае модель "черного ящика" является единственным вариантом их исследования. Например, мы не знаем как устроен организм человека; в то же время необходимо изучать влияние и поведенческий аспект средств массовой информации, влияние на живой организм лекарственным препаратов и т.д. Формализация модели "черного ящика" основывается на задании двух множеств входных и выходных переменных, и никаких других отношений между множествами не фиксируется.

Вместе с тем следует отметить, что построение модели "черного ящика" не является тривиальной задачей, так как ответ на вопрос о содержании множеств не всегда однозначен.

Построение модели основывается на выборе из бесконечного множества связей системы со средой их конечного множества, адекватно отражающего цели исследования. Очевидно. Что такие модели не надо сводить к моносистеме (т.е. системе с одним входом и выходом), а для обоснования необходимого и достаточного количества параметров множеств X и Y широко использовать методы математической статистики, привлекать опытных экспертов.


Следующим уровнем моделирования сложных систем являются модели состава систем. При рассмотрении любой системы прежде всего обнаруживается, что ее целостность и обособленность выступают как внешнее свойство. Вместе с тем внутренняя структура системы также является многообразной, неоднородной и состоит из множества неделимых функциональных элементов. Декомпозиция внутренней структуры "черного ящика" на более мелкие составляющие (подсистемы, отдельные элементы) позволяют строить модели состава систем (рис. 1.8).

Рис. 1.8. Модель состава системы

Например, если в качестве системы рассматривать производственное подразделение, то в качестве подсистемы выступают производственные участки, а в качестве отдельных элементов - оборудование, сырье, рабочие; сис-тема телевидения состоит из аппаратуры передачи, каналов связи, аппаратуры приема.

Построение модели состава в силу многообразия природы и форм элементов также не является простым делом. Это можно объяснить тремя факторами:

1.неоднозначностью понятия "элементарного элемента";

2.многоцелевым характером объекта, объективно требующим выделить под каждую цель соответствующий ей состав;

3.условностью (субъективностью) процедуры деления целого на части (системы на подсистемы, элементы).

Простота и доступность моделей "черного ящика" и состава позволяет решать с их использованием множество практических задач. Вместе с тем для более детального (глубокого) изучения систем необходимо устанавливать в модели состав отношения (связи) между элементами. Описание системы через совокупность необходимых и достаточных для достижения целей отношений между элементами назовем моделью структуры системы.

Перечень связей между элементами, на первый взгляд, является не-сколько отвлеченной, абстрактной моделью. На самом деле как рассматривать связи, если не рассмотрены сами элементы.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Словесное описание

Фирма , производящая некоторую продукцию осуществляет её рекламу двумя способами через радиосеть и через телевидение . Стоимость рекламы на радио обходится фирме в 5 $ , а стоимость телерекламы - в 100$ за минуту .

Фирма готова тратить на рекламу по 1000 $ в месяц . Так же известно , что фирма готова рекламировать свою продукцию по радио по крайней мере в 2 раза чаще , чем по телевидению .

Опыт предыдущих лет показал , что телереклама приносит в 25 раз больший сбыт продукции нежели радиореклама .

Задача заключается в правильном распределении финансовых средств фирмы .

Математическое описание .

X1- время потраченное на радиорекламу .

X2 - время потраченное на телерекламу .

Z - искомая целевая функция , оражающая максимальный сбыт от 2-ух видов рекламы .

X1=>0 , X2=>0 , Z=>0 ;

Max Z = X1 + 25X2 ;

5X1 + 100X2 <=1000 ;

X1 -2X2 => 0

Использование графического способа удобно только при решении задач ЛП с двумя переменными . При большем числе переменных необходимо применение алгебраического аппарата . В данной главе рассматривается общий метод решения задач ЛП , называемый симплекс-методом .

Информация , которую можно получить с помощью симплекс-метода , не ограничивается лишь оптимальными значениями переменных . Симплекс-метод фактически позволяет дать экономическую интерепритацию полученного решения и провести анализ модели на чувствительность .

Процесс решения задачи линейного программирования носит итерационный характер : однотипные вычислительные процедуры в определенной последовательности повторяются до тех пор , пока не будет полученооптимальное решение . Процедуры , реализуемые в рамках симплекс-метода , требуют применения вычислительных машин - мощного средства решения задач линейного программирования .

Симлекс-метод - это характерный пример итерационных вычислений , используемых при решении большинства оптимизационных задач . В данной главе рассматриваются итерационные процедуры такого рода , обеспечивающие решение задач с помощью моделей исследования операций .

В гл 2 было показано , что правая и левая части ограничений линейной модели могут быть связаны знаками <= , = и => . Кроме того , переменные , фигурирующие в задачах ЛП , могут быть неотрицательными или не иметь ограничения в знаке . Для построения общего метода решения задач ЛП соответствующие модели должны быть представлены в некоторой форме , которую назовем стандатрной формой линейных оптимизационных моделей . При стандартной форме линейной модели

1. Все ограничения записываются в виде равенств с неотрицательной правой частью ;

2. Значения всех переменных модели неотрицательны ;

3. Целевая функция подлежит максимизации или минимизации .

Покажем , каким образом любую линейную модель можно привести к стандартной .

Ограничения

1. Исходное ограничение , записанное в виде неравенства типа <= (=>) ,

можно представить в виде равенства , прибавляя остаточную переменную к левой части ограничения ( вычитая избыточную переменную из левой части ) .

Например , в левую часть исходного ограничения

5X1 + 100X2 <= 1000

вводистя остаточная переменная S1>0 , в результате чего исходное неравенство обращается в равенство

5X1 + 100X2 + S1 = 1000 , S1=>0

Если исходное ограничение определяет расход некоторого ресурса , переменную S1 следует интерпретировать как остаток , или неиспользованную часть , данного ресурса .

Рассмотрим исходное ограничение другого типа :

X1 - 2X2 => 0

Так как левая часть этого ограничения не может быть меньше правой , для обращения исходного неравенства в равенство вычтем из его левой части избыточную переменную S2>0 . В результате получим

X1 - 2X2 - S2 = 0 , S2=>0

2. Правую часть равенства всегда можно сделать неотрицательной , умножая оби части на -1 .

Например равенство X1 - 2X2 - S2 = 0 эквивалентно равенству - X1 + 2X2 + S2 = 0

3. Знак неравенства изменяется на противоположный при умножении обеих частей на -1 .

Например можно вместо 2 <4 записать - 2 >-4 , неравенство X1 - 2X2 <= 0 заменить на - X1+ 2X2=>0

Переменные

Любую переменную Yi , не имеющую ограничение в знаке , можно представить как разность двух неотрицательных переменных :

Yi=Yi’-Yi’’, где Yi’,Yi’’=>0.

Такую подстановку следует использовать во всех ограничениях , которые содержат исходную переменную Yi , а также в выражении для целевой функции .

Обычно находят решение задачи ЛП , в котором фигурируют переменные Yi’ и Yi’’ , а затем с помощью обратной подстановки определяют величину Yi . Важная особенность переменных Yi’ и Yi’’ состоит в том , что при любом допустимом решении только одна из этих переменных может принимать положительное значение , т.е. если Yi’>0 , то Yi’’=0, и наоборот . Это позволяет рассматривать Yi’ как остаточную переменную , а Yi’’ - как избыточную переменную , причем лишь одна из этих переменных может принимать положительное значение . Указанная закономерность широко используется в целевом программировании и фактически является предпосылкой для использования соответсвующих преобразований в задаче 2.30

Целевая функция

Целевая функция линейной оптимизационной модели , представлена в стандартной форме , может подлежать как максимизации , так и минимизации . В некоторых случаях оказывается полезным изменить исходную целевую функцию .

Максимизация некоторой функции эквивалентна минимизации той же функции , взятой с противоположным знаком , и наоборот . Например максимизация функции

Z = X1 + 25X2

эквивалентна минимизации функции

(-Z ) = -X1 - 25X2

Эквивалентность означает , что при одной и той же совокупности ограничений оптимальные значения X1 , X2 , в обоих случаях будут одинаковы . Отличие заключается только в том , что при одинаковых числовых значениях целевых функций их знаки будут противоположны .