Смекни!
smekni.com

Построение экономической модели c использованием симплекс-метода (стр. 10 из 10)

Z = ( 1 + d1 )X1 + 25X2

Если воспользоваться данными начальной симплекс-таблицы и
выполнить все вычисления , необходимые для ( получения заключн-
тельной симплекс-таблицы , то последнее Z-уравнение будет выгля-
деть следующим образом:

Базисные переменные X1 X2 S1 S2 Решение
Z 0 0 27/110+1/55d1 5/22-50/55d1 2455/11+1000/55d1

Коэффициенты при базисных переменных X1 , X2и остаточных я равными нулю . Это уравнение отличается от Z-уравнения до введения d1 , только наличием членов , содержащих d1. Коэффициенты при d1 равны Коэффициентам при соответствующих переменных в Z-уравнении симплекс-таблицы для полученного ранее оптимального решения

Базисные переменные X1 X2 S1 S2 Решение
X1 1 0 1/55 -50/55 1000/55

Мы рассматриваем X1 - уравнение , так как коэффициент именно при
этон переменной в выражении для целевои функции изменился
на d1.

Оптимальные значения переменных будут оставаться неизмен-
ными при значениях d1, удовлетворяющих условию неотрицатель-
ности ( задача на отыскание максимума ) всех коэффициентов при не-
базисных
переменных в Z-уравнении . Таким образом , должны выполняться следующие неравенства :

27/110+ 1/55d1 => 0

5/22-50/55d1 => 0

Из первого неравенства получаем , что d1 => - 13,5 , а из второго следует что d1 <= 1/4 . Эти результаты определяют пределы изменения коэффициента C1 в виде следующего соотношения : - 13,5 <= d1<=1/4 . Та-
ким образом , при уменьшении коэффициента целевой функции при
переменной X1 до значения , равного 1 + ( - 13,5 ) = - 12,5 или при его увеличении до 1 + 13,5 = 14,5 оптимальные значения переменных остаются
неизменными . Однако оптимальное значение Z будет изменяться (в соответствии с выражением 2455/11 +1000/55d1, где - 13,5 <= d1<=1/4

X2 изменяется от 25 до25 + d2гдеd2 может быть как положительным , так и отрицательным числом . Целевая функция в этом случае принимает следующий вид:

Z = ( 25 + d2 )X2 + X1

Все предыдущее обсуждение касалось исследования изменения коэффициента при переменной , которой поставлено в соответствие ограничение , фигурирующее в симплекс-таблице . Однако такое ограничение имеется лишь в том случае , когда данная переменная является базисной ( например X1и X2 ) . Если переменная небазисная , то в столбце , содержащем базисные переменные , она не будет представлена .

Любое изменение коэффициента целевой функции при небазисной переменной приводит лишь к тому , что в заключительной симплкс-таблице изменяется только этот коэффициент . Рассмотрим в качестве иллюстрации случай , когда коэффициент при переменной S1 ( первой остаточной переменной ) изменяется от 0 до d3. Выполнение преобразований , необходимых для получения заключительной симплекс таблицы , приводит к следующему результирующему Z-уравнению :

Базисные переменные X1 X2 S1 S2 Решение
Z 0 0 27/110+1/55d1 5/22 2455/11

Заключение

В результате проведенного исследования, было получено подтверждение о выгодности использования математико-экономического проектирования и методов системного анализа для анализа и планирования экономических систем.


Список литературы :

В этом месте должна указываться литература использованная в курсовой работе, но прогресс привел к тому, что вся информация черпалась на страницах INTERNET, а следовательно

Список серверов:

www.citforum.ru

www.rambler.ru

www.msu.ru

www.ntcf.ru

www.yandex.ru