Теорема 2.1 (Янг [1975])
(a) Всі відображення голосування, засновані на підрахунку очок (підмножини кандидатів, що вибирають, із найбільшою сумарною кількістю очок), задовольняють аксіомі поповнення. Якщо при рівності очок вибір проводиться на основі фіксованого порядку на А, то відповідні правила голосування також задовольняють аксіомі поповнення.
(b) Не існує заможного за Кондорсе правила голосування (або відображення голосування), яке б задовольняло аксіомі поповнення.
Аксіома участі. Нехай кандидат а вибирається з множини А виборцями з N. Розглянемо далі виборця i поза N. Тоді виборці з NÈ{i} повинні обрати або а, або кандидата, що для агента i строго краще а.
Це означає, що якщо додатковий голос дійсно змінює результат виборів, то це може бути тільки на руку “ключовому” виборцю.
Теорема 2.2 (Мулен [1986с])
(a) Для всіх правил голосування з підрахунком очок, коли при рівності очок вибір здійснюється за допомогою заданого порядку на А, виконується аксіома участі.
(b) Якщо А складається хоча б із чотирьох кандидатів, то жодне заможне за Кондорсе правило голосування не задовольняє аксіомі участі.
Безперервність. Нехай виборці з N1 обирають кандидата а з A, а група N2, що не пересікається з N1, обирає іншого кандидата b. Тоді існує достатньо велике число m дублів групи виборців N1, таке що комбінована група виборців (mN1)ÈN2обере а.
Теорема 2.3 (Янг [1975]). Відображення голосування засноване на методі підрахунку очок (визначення 2.3 без фіксації правила для випадку рівності очок) тоді і тільки тоді, коли воно задовольняє таким чотирьом властивостям:
анонімність, нейтральність,
аксіома поповнення і безперервність.
Голосування з послідовним винятком. Спочатку за правилом більшості виключається або а, або b,потім за правилом більшості проводиться порівняння переможця першого раунду і с і так далі. У випадку рівності програє нижній кандидат.
У цьому процесі поправок нехай а - поправка, b - поправка до поправки, с - вихідна пропозиція, d - status quo.
Цей метод задовольняє аксіомі спроможністі за Кондорсе: якщо а - переможець за Кондорсе, то він виграє. Насправді спроможність при порівняннях за правилом більшості справедлива в ширшому змісті.
Спроможність за Смітом. Якщо множина А кандидатів розбивається на дві підмножини В1, B2, що не перетинаються, і кожний кандидат b1ÎВ1 виграє (за суворою більшістю) у будь-якого кандидата b2ÎВ2, то повинний бути обраний результат із В1.
З іншого боку, голосування при послідовному винятку очевидно не є нейтральним. Порядок виключень, звичайно, впливає на результат.
Правило рівнобіжного виключення. Спочатку за правилом більшості дорівнюються пари а з b і с з d. Переможці зустрічаються у фіналі, де порівнюються за правилом більшості. У випадку рівності вибирається кандидат, що йде раніше за алфавітом.
Це - знову заможний за Кондорсе метод. Більш того, для обрання кожному кандидату х потрібно перемогти в двох порівняннях за правилом більшості. Припустимо спочатку, що рівності при порівнянні з цими двома кандидатами немає (х виграє для суворої більшості). Тоді х не може домінуватися за Парето деяким кандидатом у, інакше b був би переможцем за Кондорсе. Отже, метод рівнобіжного виключення вибирає оптимальний за Парето результат у (найбільше поширеному) випадку, коли при бінарних виборах немає рівностей. Проте якщо рівності можливі, то оптимальність за Парето може порушуватися.
Бінарним деревом на А є таке кінцеве дерево, у котрому кожній нефінальній вершині (включаючи початкову) відповідають рівно дві наступні, а кожній фінальній вершині (у котрої немає наступних) приписаний кандидат (елемент із A), причому кожний кандидат з'являється принаймні в одній фінальній вершині.
Серед бінарних дерев найпростішими є ті, у котрих кожний кандидат приписаний рівно одній вершині. Назвемо їх деревами без повторних виключень.
Лема 2.1
(а)Якщо А складається з трьох кандидатів, то дерево після послідовного виключення є єдиним безповторним деревом. Відповідне правило голосування оптимальне за Парето (при нашій умові, що всі порівняння по більшості суворі).
(b) Якщо А складається з чотирьох кандидатів, тобто тільки два безповторних дерева: послідовне виключення і рівнобіжне виключення. Перше з них порушує оптимальність за Парето, а останнє - ні.
(c) Якщо А містить п'ять або більше кандидатів, то будь-яке виключення по безповторному дереву призводить до обрання кандидата для деяких профілі,в що домінується за Парето.
Існує бінарне дерево, визначене для довільної кількості учасників, що дозволяє уникнути обох цих небезпек. Відповідні послідовні виключення породжують оптимальне за Парето, анонімне і монотонне правило голосування. Це дерево називається деревом багатоетапного виключення.
Для кожного конкретного упорядкування кандидатів існує по одному такому дереву. Позначимо через Гp(1,2,... ,р) дерево, що відповідає порядку A={1,2,... ,р}. Визначимо його індуктивно за розміром А:
Так, для трьох і чотирьох кандидатів одержуємо: