Смекни!
smekni.com

Шпоры по эконометрике (стр. 8 из 9)

Таким образом, d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадра­тов по модели регрессии. Можно предположить что:

, предположим также

Коэффициент автокорреляции остатков оп­ределяется как

С учетом (3) имеем:

Таким образом, если в остатках существует полная положи­тельная автокорреляция и

, то d= 0. Если в остатках полная отрицательная автокорреляция, то
и, следовательно, d= 4.Если автокорреляция остатков отсутствует, то
и d = 2. Следовательно, 0≤d≤4

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина — Уотсона следующий. Выдвигается гипотеза Н0 об отсутствии автокорреляции остатков. Альтернативные ги­потезы Н1 Н1* состоят, соответственно, в наличии положитель­ной или отрицательной автокорреляции в остатках. Далее по спе­циальным таблицам определяются критичес­кие значения критерия Дарбина — Уотсона dl и du для заданного числа наблюдений n, числа независимых переменных модели к и уровня значимости α. По этим значениям числовой промежуток [0;4] разбивают на пять отрезков. Если фактическое значение критерия Дарбина — Уотсона по­падает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу Hо.

№29. ОБЩАЯ ХАРАКТЕРИСТИКА МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ. ИНТЕРПРИТАЦИЯ ПАРАМЕТРОВ МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ.

Величину L, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике лагом, а временные ряды самих факторных переменных, сдвинутые на один ил более моментов времени, — лаговыми переменными.

Эконометрическое моделирование осуществляется с применением моделей, содержащих не только текущие, но и лаговые значения факторных переменных. Эти модели называются моделями с распределенным лагом. Модель вида

является примером модели с распределенным лагом.

Наряду с лаговыми значениями независимых, или факторных, переменных на величину зависимой переменной текущего периода могут оказывать влияние ее значения в прошлые моменты или периоды времени. Эти процессы обычно описывают с помощью моделей регрессии, содержащих в качестве факторов лаговые значения зависимой переменной, которые называются моделями авторегрессии. Модель вида

относится к моделям авторегрессии. Построение моделей с распределенным лагом и моделей ав­торегрессии имеет свою специфику. Во-первых, оценка парамет­ров моделей авторегрессии, а в большинстве случаев и моделей с распределенным лагом не может быть произведена с помощью обычного МНК ввиду нарушения его предпосылок и требует спе­циальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в-третьих, между моделями с распределенным лагом и моделями авторегрессии су­ществует определенная взаимосвязь, и в некоторых случаях необ­ходимо осуществлять переход от одного типа моделей к другому. Интерпретация параметров моделей с распределительным лагом. Рассмотрим модель с распределенным лагом в ее общем виде в предположении, что максимальная величина лага конечна:

Эта модель говорит о том, что если в некоторый момент вре­мени t происходит изменение независимой переменной х, то это изменение будет влиять на значения переменной у в течение l следующих моментов времени.

Коэффициент регрессии b0 при переменной xt характеризует среднее абсолютное изменение уt при изменении хt на 1 ед. свое­го измерения в некоторый фиксированный момент времени t, без учета воздействия лаговых значений фактора x. Этот коэффици­ент называют краткосрочным мультипликатором.

В момент (t+1) совокупное воздействие факторной перемен­ной xt на результат уt , составит (b0 + b1) усл. ед., в момент (t+2) это воздействие можно охарактеризовать суммой (b0+b1+b2) и т. д. Полученные таким образом суммы называют промежуточными мультипликаторами.

Введем следующее обозначение:

b0 +b1 +…+bl =b

Величину b называют долгосрочным мультипликатором. Он по­казывает абсолютное изменение в долгосрочном периоде t + l ре­зультата у под влиянием изменения на 1 ед. фактора х.

Предположим

ßj =bj /b, j=0:1

Назовем полученные величины относительными коэффициен­тами модели с распределенным лагом. Сред­ний лаг определяется по формуле средней арифметической взве­шенной:

и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t. Небольшая величина среднего лага свидетельствует об относительно быстром реагировании резуль­тата на изменение фактора, тогда как высокое его значение гово­рит о том, что воздействие фактора на результат будет сказывать­ся в течение длительного периода времени. Медианный лаг — это величина лага, для которого

Это тот период времени, в течение которого с момента време­ни t будет реализована половина общего воздействия фактора на результат.

№ 30 МЕТОД АЛМОНА.

В методе А. предполагается ,что веса текущих лаговых значений объясняющих переменных подчиняются палениальному распределению. bj = c0 +c1j+ c2j2 +…+ ckjk

Уравнение регрессии примет вид yt = a+c0z0+c1z1+ c2z2 + ckzkt , где zi =

; i=1,…,k; j=1,…,p. Расчет параметров модели с распределенным лагом проводится по следующей схеме:

1. Устанавливается макси. величина лага l.

2. Определяется степень паленома k,описывающего структуру лага.

3. Рассчитывается значение переменных с z0 до zk.

4. Определяются параметры уравнения линейной регрессии yt(zi).

5. Рассчитываются параметры исходной модели с распределенным лагом.

№ 31 МЕТОД КОЙКА.

В распределение Койка делается предположение, что коэффициенты при лаговых значениях объясняющей переменной убывают в геометрической прогрессии. bl=b0λl; l=0,1,2,3; 0 ≤ λ ≤ 1. Уравнение регрессии преобразовывается к виду:

yt=a+b0xt+b0λxt-1+b0λ2xt-2+…+ εt. После несложных преобразований получаем ур-ие оценки параметров исходящего ур-ия.

№ 32 МЕТОД ГЛАВНЫХ КОМПОНЕНТ.

Суть метода — сократить число объясняющих пе­ременных до наиболее существенно влияющих факторов. Метод главных компонент применяется для исключе­ния или уменьшения мультиколлинеарности объясняющих пере­менных регрессии. Основная идея заключается в сокращении числа объясняющих переменных до наиболее существенно влия­ющих факторов. Это достигается путем линейного преобразова­ния всех объясняющих переменных xi (i=0,..,n) в новые пере­менные, так называемые главные компоненты. При этом требу­ется, чтобы выделению первой главной компоненты соответство­вал максимум общей дисперсии всех объясняющих переменных xi (i=0,..,n). Второй компоненте — максимум оставшейся дис­персии, после того как влияние первой главной компоненты ис­ключается и т. д.

№ 33 МОДЕЛИ АВТОРЕГРЕССИИ. ОЦЕНКА ПАРАМЕТРОВ МОДЕЛЕЙ АВТОРЕГРЕССИИ.

Модели содержащие в качестве факторов лаговые знач. зависимой переменной называются моделями авторегрессии. Н-р yt=a+b0xt+c1yt-1+ εt. Как и в модели с распределенным лагом b0 и в этой модели характеризует краткосрочные изменения yt под воздействием изменения х1 на 1 ед. Долгосрочный мультипликатор в модели авторегрессии рассчитывается как сумма краткосрочного и промежуточных мультипликаторов b = b0+b0 c1+b0 c12+b0 c13+…=b0(1+c1+c12+c13+…)=b0/1-c1

Отметим, что такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основаны на предпосылке о наличие бесконечного лага в воздействии текущего знач. зависимой переменной на ее будущее знач.

Одним из возможных методов расчета параметров уравнения авторегрессии является метод инструментальных переменных. Сущность этого метода состоит в том, чтобы заменить перемен­ную из правой части модели, для которой нарушаются предпо­сылки МНК, на новую переменную, включение которой в модель регрессии не приводит к нарушению его предпосылок. Примени­тельно к моделям авторегрессии необходимо удалить из правой части модели переменную yt-1. Искомая новая переменная, кото­рая будет введена в модель вместо yt-1ь должна иметь два свойст­ва. Во-первых, она должна тесно коррелировать с yt-1ь во-вторых, она не должна коррелировать с остатками ur.