Смекни!
smekni.com

Шпоры по эконометрике (стр. 5 из 9)

Исследования остатков

- предполагают проверку наличия сле­дующих пяти предпосылок МНК:1.случайный характер остатков; 2.нулевая средняя величина остатков, не зависящая от хi;

3.гомоскедастичность—дисперсия каждого отклонения

,одинакова для всех значений х; 4.отсутствие автокорреляции остатков. Значения остатков
, распределены независимо друг от друга; 5.остатки подчиняются нормальному распределению.

1. Проверяется случайный характер остатков

, с этой целью строится график зависимости остатков
от теоретических значений результативного признака. Если на графике получена горизонтальная полоса, то остатки
, представляют собой случайные величины и МНК оправдан, те­оретические значения уххорошо аппроксимируют фактические значения y. В других случаях необходимо либо применять дру­гую функцию, либо вводить дополнительную информацию и за­ново строить уравнение регрессии до тех пор, пока остатки
, не будут случайными величинами.

2. Вторая предпосылка МНК относительно нулевой средней ве­личины остатков означает, что

(у — ух) = 0. Это выполнимо для линейных моделей и моделей, нелинейных относительно вклю­чаемых переменных. С этой целью наряду с изложенным графиком зависимости остатков
от теоретических значений ре­зультативного признака ухстроится график зависимости случай­ных остатков
от факторов, включенных в регрессию хi . Если остатки на графике расположены в виде горизонтальной полосы, то они независимы от значений xj. Если же график показывает наличие зависимости
и хj то модель неадек­ватна. Причины неадекватности могут быть разные.

3. В соответствии с третьей предпосылкой МНК требуется, что­бы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора xj остатки

, имеют одинаковую дисперсию. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции. Гомоскедастичность остатков означает, что дисперсия остат­ков
- одинакова для каждого значения х.

4.Отсутствие автокор­реляции остатков, т. е. значения остатков

распределены неза­висимо друг от друга. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Отсутствие автокорреляции остаточных величин обеспечива­ет состоятельность и эффективность оценок коэффициентов ре­грессии.

№17. СУЩНОСТЬ АНАЛИЗА ОСТАТКОВ ПРИ НАЛИЧИИ РЕГРЕССИОННОЙ МОДЕЛИ. КАК МОЖНО ПРОВЕРИТЬ НАЛИЧИЕ ГОМО- ИЛИ ГЕТЕРОСКЕДАСТИЧНОСТИ ОСТАТКОВ. ОЦЕНКА ОТСУТСТВИЯ АВТОКОРРЕЛЯЦИИ ОСТАТКОВ ПРИ ПОСТРОЕНИИ СТАТИСТИЧЕСКОЙ РЕГРЕССИОННОЙ МОДЕЛИ.

С этой целью строиться график зависимости остатков ei от теоретических значений результативного признака:

Если на графике получена горизонтальная полоса, то остатки ei представляют собой случайные величины и МНК оправдан, те­оретические значения уххорошо аппроксимируют фактические значения у.

Возможны следующие случаи: если ei зависит от уx, то: 1.остатки ei не случайны.2. остатки ei, не имеют постоянной дисперсии. 3. Остатки ei носят систематический характер в дан­ном случае отрицательные значения ei, соответствуют низким значениям ух, а положительные — высоким значениям. В этих случаях необходимо либо применять дру­гую функцию, либо вводить дополнительную информацию.

Как можно проверить наличие гомо- или гетероскедастичноси остатков? Гомоскедастичность остатков означает, что дисперсия остатков ei одинакова для каждого значения х.Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции. а — дисперсия остатков растет по мере увеличения х; б — дисперсия остатков достигает максимальной величины при средних значениях переменной х и уменьшается при минимальных и максимальных значениях х; в — максимальная дисперсия остатков при

малых значениях х и дисперсия остатков однородна по мере увеличения значений х. Графики гомо- и гетеро-ти.

Оценка отсутствия автокорреляции остатков(т.е. значения остатков ei распределены независимо друг от друга). Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Коэффициент корреляции между ei и ej , где ei — остатки текущих наблюдений, ej — остатки предыдущих наблю­дений, может быть определен по обычной формуле линейного коэффициента корреляции

. Если этот коэффициент окажется существенно отличным от ну­ля, то остатки автокоррелированы и функция плотности вероят­ности F(e) зависит j-й точки наблюдения и от распределения значений остатков в других точках наблюдения. Для регрессионных моделей по статической информации ав­токорреляция остатков может быть подсчитана, если наблюдения упорядочены по фактору х. Отсутствие автокорреляции остаточных величин обеспечива­ет состоятельность и эффективность оценок коэффициентов ре­грессии. Особенно актуально соблюдение данной предпосылки МНК при построении регрессионных моделей по рядам динами­ки, где ввиду наличия тенденции последующие уровни динами­ческого ряда, как правило, зависят от своих предыдущих уров­ней.

№18 СМЫСЛ ОБОБЩЕННОГО МНК.

При нарушении гомоскедастичности и наличии автокорреля­ции ошибок рекомендуется традиционный МНК заменять обобщенным методом. Обобщенный МНК применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Обобщенный МНК для корректировки гетерос-ти. В общем виде для уравнения yi=a+bxi+ei при

где Ki – коэф-т пропор-ти. Модель примет вид: yi=
+
xi+
ei . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафик­сированные в ходе i-го наблюдения на
. Тогда дисперсия остатков будет величиной постоянной. От регрессии у по х мы перейдем к регрессии на новых переменных: y/
и х/
. Уравнение регрессии примет вид:
. По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешен­ную регрессию, в которой переменные у и х взяты с весами
. Коэф-т регрессии b можно определить как
Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии b представляет собой взвешенную величину по отношению к обычному МНК с весами 1/К.Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Модель примет вид:
. Модель с преобразованными переменными составит

. Это уравнение не содер-т свобод-го члена, применяя обычный МНК получим:
Применение в этом случае обобщенного МНК приводит к то­му, что наблюдения с меньшими значениями преобразованных переменных х/К имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменны­ми.