Смекни!
smekni.com

Шпоры по эконометрике (стр. 4 из 9)

№12. ЧТО ОЗНОЧАЕТ ВЗАИМОДЕЙСТВИЕ ФАКТОРОВ И КАК ОНО МОЖЕТ БЫТЬ ПРЕДСТАВЛЕНО ГРАФИЧЕСКИ?

Одним из путей учета внутренней корреляции факторов является переход к совмещенным уравнениям регрессии, т. е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Так, если y=f(x1,x2,x3), то возможно пост­роение следующего совмещенного уравнения: y=a+b1x1+b2x2+b3x3+b12x1x2+b13x1x3+b23x2x3+e.Рассматриваемое уравнение включает взаимодействие перво­го порядка (взаимодействие двух факторов). Возможно включе­ние в модель и взаимодействий более высокого порядка, если будет доказана их статистическая значимость по F-критерию Фи­шера. Если анализ совмещенного уравнения показал значи­мость только взаимодействия факторов х1 и х3,то уравнение бу­дет иметь вид: y=a+b1x1+b2x2+b3x3+b13x1x3+e.Взаимодействие факторов х1 и х3 означает, что на разных уровнях фактора х3 влияние фактора х1 на у будет неодинаково, т. е. оно зависит от значений фактора х3. На рис. взаимодейст­вие факторов представляется непараллельными линиями связи с результатом у. И, наоборот, параллельные линии влияния факто­ра x1 на у при разных уровнях фактора х3 означают отсутствие вза­имодействия факторов х1 и х3. Графики:

ах1 влияет на у, причем это влияние одинаково как при х31, так и при х32(одинаковый наклон линий регрессии), что означает отсутствие взаи­модействия факторов х1 и х3; б — с ростом х1 результативный признак y возрастает при х3 = В1; с ростом х1 результативный признак у снижается при х3 = В2.. Между х1 и х3 существу­ет взаимодей-вие. Совмещенные уравнения регрессии строятся, например, при исследовании эффекта влияния на урожайность разных видов удобрений.Решению проблемы устранения мультиколлинеарности фак­торов может помочь и переход к уравнениям приведенной фор­мы. С этой целью в уравнение регрессии производится подста­новка рассматриваемого фактора через выражение его из другого уравнения.

№13. ИНТЕРПРИТАЦИЯ КОЭФФИЦИЕНТОВ РЕГРЕССИИ ЛИНЕЙНОЙ МОДЕЛИ ПОТРЕБЛЕНИЯ. СМЫСЛ СУММЫ bi В ПРОИЗВОДСТВЕННЫХ ФУНКЦИЯХ И ЗНАЧЕНИЕ СУММЫ bi>1 . КОЭФФИЦИЕНТЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ОЦЕНКИ СРАВНИТЕЛЬНОЙ СИЛЫ ВОЗДЕЙСТВИЯ ФАКТОРОВ НА РЕЗУЛЬТАТ.

Функция потребления: С=К*у+L, где С-потребление, у-доход, К и L-параметры функции.(у=С+I, I-размер инвистиций). Предположим, что функция потребления составила :С= 1,9 + 0,65 *у .Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи дохода на потреб­ление расходуется в среднем 650 руб., а 350 руб. инвестируются. В производственных функциях:

где Р - количество продукта, изготавливаемого с помощью т производст­венных факторов (F1, F2,..., Fm);b-параметр, являющийся эластичностью количества продукции по отношению к количеству соответствующих производственных факторов.

Экономический смысл имеют не только коэффициенты b каждого фактора, но и их сумма, т. е. сумма эластичностей: В=b1+ b2 +...+ Ьт. Эта величина фиксирует обобщенную харак­теристику эластичности производства.

При практических расчетах не всегда

.Она может быть как больше, так и меньше единицы. В этом случае величина В фиксирует приближенную оценку эластичности выпуска с рос­том каждого фактора производства на 1 % в условиях увеличива­ющейся > 1) или уменьшающейся < 1) отдачи на масштаб. Так, если Р = 2,4* F
* F20,7 * F30,2, то с ростом значений каж­дого фактора производства на 1 % выпуск продукции в целом возрастает приблизительно на 1,2 %.

№14. НАЗНАЧЕНИЕ ЧАСТНОЙ КОРРЕЛЯЦИИ ПРИ ПОСТРОЕНИИ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. Ранжирование факторов, участву­ющих во множественной линейной регрессии, может быть прове­дено через стандартизованные коэффициенты регрессии, с помо­щью частных коэффициентов корреляции — для линейных связей. При нелинейной взаимосвязи исследуемых признаков эту функцию выполняют частные индексы детерминации. Кроме того, частные показатели корреляции широко используются при решении проблемы отбора факторов: целесообразность включе­ния того или иного фактора в модель доказывается величиной показателя частной корреляции.

Частные коэффициенты (или индексы) корреляции характери­зуют тесноту связи между результатом и соответствующим фак­тором при устранении влияния других факторов, включенных в уравнение регрессии.

Показатели частной корреляции представляют собой отно­шение сокращения остаточной дисперсии за счет дополнитель­ного включения в анализ нового фактора к остаточной диспер­сии, имевшей место до введения его в модель.

Частные коэффициенты корреляции измеряющие влияние на у фактора хi при неизменном уровне др. факторов можно определить по формуле:

;

При двух факторах и i=1 данная формула примет вид:

Частные коэффициенты корреляции изменяются в пределах от -1 до 1.

№15. ЧАСТНЫЙ F-КРИТЕРИЙ, ЕГО ОТЛИЧИЕ ОТ ПОСЛЕДОВАТЕЛЬНОГО F-КРИТЕРИЯ, СВЯЗЬ МЕЖДУ СОБОЙ t- КРИТЕРИЯ СТЬЮДЕНТА ДЛЯ ОЦЕНКИ ЗНАЧИМОСТИ bi И ЧАСТНЫМ F-КРИТЕРИЕМ.

Ввиду корреляции м/у факторами значимость одного и того же фактора м/б различной в зависимости от последовательности его введения в модель. Мерой для оценки включения фактора в модель служит частый F-критерий, т.е. Fxi. В общем виде для фактора xi частый F-критерий определяется как :

Если рас­сматривается уравнение y=a+b1x1+b2+b3x3+e, то определяются последовательно F-критерий для уравнения с од­ним фактором х1, далее F-критерий для дополнительного включе­ния в модель фактора х2, т. е. для перехода от однофакторного уравнения регрессии к двухфакторному, и, наконец, F-критерий для дополнительного включения в модель фактора х3, т. е. дается оценка значимости фактора х3 после включения в модель факто­ров x1 их2. В этом случае F-критерий для дополнительного вклю­чения фактора х2 после х1 является последовательным в отличие от F-критерия для дополнительного включения в модель фактора х3, который является частным F-критерием, ибо оценивает значи­мость фактора в предположении, что он включен в модель по­следним. С t-критерием Стьюдента связан именно частный F-критерий. Последовательный F-критерий может интересовать исследователя на стадии формирования модели. Для уравнения y=a+b1x1+b2+b3x3+e оценка значимости коэффициентов регрессии Ь12,,b3 предпола­гает расчет трех межфакторных коэффициентов детерминации, а именно:

,
,
и можно убедиться, что существует связь между собой t- критерия Стьюдента для оценки значимости bi и частным F-критерием:

На основе соотношения bi и
получим:

№16 ПРЕДПОСЫЛКИ МНК.

При оценке параметров уравнения регрессии применяется МНК. При этом делаются определенные предпосылки относительно составляющей

, которая представляет собой ненаблюдаемую величину.