№12. ЧТО ОЗНОЧАЕТ ВЗАИМОДЕЙСТВИЕ ФАКТОРОВ И КАК ОНО МОЖЕТ БЫТЬ ПРЕДСТАВЛЕНО ГРАФИЧЕСКИ?
Одним из путей учета внутренней корреляции факторов является переход к совмещенным уравнениям регрессии, т. е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Так, если y=f(x1,x2,x3), то возможно построение следующего совмещенного уравнения: y=a+b1x1+b2x2+b3x3+b12x1x2+b13x1x3+b23x2x3+e.Рассматриваемое уравнение включает взаимодействие первого порядка (взаимодействие двух факторов). Возможно включение в модель и взаимодействий более высокого порядка, если будет доказана их статистическая значимость по F-критерию Фишера. Если анализ совмещенного уравнения показал значимость только взаимодействия факторов х1 и х3,то уравнение будет иметь вид: y=a+b1x1+b2x2+b3x3+b13x1x3+e.Взаимодействие факторов х1 и х3 означает, что на разных уровнях фактора х3 влияние фактора х1 на у будет неодинаково, т. е. оно зависит от значений фактора х3. На рис. взаимодействие факторов представляется непараллельными линиями связи с результатом у. И, наоборот, параллельные линии влияния фактора x1 на у при разных уровнях фактора х3 означают отсутствие взаимодействия факторов х1 и х3. Графики:
а— х1 влияет на у, причем это влияние одинаково как при х3=В1, так и при х3=В2(одинаковый наклон линий регрессии), что означает отсутствие взаимодействия факторов х1 и х3; б — с ростом х1 результативный признак y возрастает при х3 = В1; с ростом х1 результативный признак у снижается при х3 = В2.. Между х1 и х3 существует взаимодей-вие. Совмещенные уравнения регрессии строятся, например, при исследовании эффекта влияния на урожайность разных видов удобрений.Решению проблемы устранения мультиколлинеарности факторов может помочь и переход к уравнениям приведенной формы. С этой целью в уравнение регрессии производится подстановка рассматриваемого фактора через выражение его из другого уравнения.
№13. ИНТЕРПРИТАЦИЯ КОЭФФИЦИЕНТОВ РЕГРЕССИИ ЛИНЕЙНОЙ МОДЕЛИ ПОТРЕБЛЕНИЯ. СМЫСЛ СУММЫ bi В ПРОИЗВОДСТВЕННЫХ ФУНКЦИЯХ И ЗНАЧЕНИЕ СУММЫ bi>1 . КОЭФФИЦИЕНТЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ОЦЕНКИ СРАВНИТЕЛЬНОЙ СИЛЫ ВОЗДЕЙСТВИЯ ФАКТОРОВ НА РЕЗУЛЬТАТ.
Функция потребления: С=К*у+L, где С-потребление, у-доход, К и L-параметры функции.(у=С+I, I-размер инвистиций). Предположим, что функция потребления составила :С= 1,9 + 0,65 *у .Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи дохода на потребление расходуется в среднем 650 руб., а 350 руб. инвестируются. В производственных функциях:
где Р - количество продукта, изготавливаемого с помощью т производственных факторов (F1, F2,..., Fm);b-параметр, являющийся эластичностью количества продукции по отношению к количеству соответствующих производственных факторов.
Экономический смысл имеют не только коэффициенты b каждого фактора, но и их сумма, т. е. сумма эластичностей: В=b1+ b2 +...+ Ьт. Эта величина фиксирует обобщенную характеристику эластичности производства.
При практических расчетах не всегда
.Она может быть как больше, так и меньше единицы. В этом случае величина В фиксирует приближенную оценку эластичности выпуска с ростом каждого фактора производства на 1 % в условиях увеличивающейся (В > 1) или уменьшающейся (В < 1) отдачи на масштаб. Так, если Р = 2,4* F * F20,7 * F30,2, то с ростом значений каждого фактора производства на 1 % выпуск продукции в целом возрастает приблизительно на 1,2 %.№14. НАЗНАЧЕНИЕ ЧАСТНОЙ КОРРЕЛЯЦИИ ПРИ ПОСТРОЕНИИ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. Ранжирование факторов, участвующих во множественной линейной регрессии, может быть проведено через стандартизованные коэффициенты регрессии, с помощью частных коэффициентов корреляции — для линейных связей. При нелинейной взаимосвязи исследуемых признаков эту функцию выполняют частные индексы детерминации. Кроме того, частные показатели корреляции широко используются при решении проблемы отбора факторов: целесообразность включения того или иного фактора в модель доказывается величиной показателя частной корреляции.
Частные коэффициенты (или индексы) корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии.
Показатели частной корреляции представляют собой отношение сокращения остаточной дисперсии за счет дополнительного включения в анализ нового фактора к остаточной дисперсии, имевшей место до введения его в модель.
Частные коэффициенты корреляции измеряющие влияние на у фактора хi при неизменном уровне др. факторов можно определить по формуле:
;При двух факторах и i=1 данная формула примет вид:
Частные коэффициенты корреляции изменяются в пределах от -1 до 1.
№15. ЧАСТНЫЙ F-КРИТЕРИЙ, ЕГО ОТЛИЧИЕ ОТ ПОСЛЕДОВАТЕЛЬНОГО F-КРИТЕРИЯ, СВЯЗЬ МЕЖДУ СОБОЙ t- КРИТЕРИЯ СТЬЮДЕНТА ДЛЯ ОЦЕНКИ ЗНАЧИМОСТИ bi И ЧАСТНЫМ F-КРИТЕРИЕМ.
Ввиду корреляции м/у факторами значимость одного и того же фактора м/б различной в зависимости от последовательности его введения в модель. Мерой для оценки включения фактора в модель служит частый F-критерий, т.е. Fxi. В общем виде для фактора xi частый F-критерий определяется как :
Если рассматривается уравнение y=a+b1x1+b2+b3x3+e, то определяются последовательно F-критерий для уравнения с одним фактором х1, далее F-критерий для дополнительного включения в модель фактора х2, т. е. для перехода от однофакторного уравнения регрессии к двухфакторному, и, наконец, F-критерий для дополнительного включения в модель фактора х3, т. е. дается оценка значимости фактора х3 после включения в модель факторов x1 их2. В этом случае F-критерий для дополнительного включения фактора х2 после х1 является последовательным в отличие от F-критерия для дополнительного включения в модель фактора х3, который является частным F-критерием, ибо оценивает значимость фактора в предположении, что он включен в модель последним. С t-критерием Стьюдента связан именно частный F-критерий. Последовательный F-критерий может интересовать исследователя на стадии формирования модели. Для уравнения y=a+b1x1+b2+b3x3+e оценка значимости коэффициентов регрессии Ь1,Ь2,,b3 предполагает расчет трех межфакторных коэффициентов детерминации, а именно:
, , и можно убедиться, что существует связь между собой t- критерия Стьюдента для оценки значимости bi и частным F-критерием:На основе соотношения bi и получим:
№16 ПРЕДПОСЫЛКИ МНК.
При оценке параметров уравнения регрессии применяется МНК. При этом делаются определенные предпосылки относительно составляющей
, которая представляет собой ненаблюдаемую величину.