Смекни!
smekni.com

Шпоры по эконометрике (стр. 2 из 9)

Если же величина окажется меньше табличной Fфакт ‹, Fтабл , то вероятность нулевой гипотезы выше заданного уровня и она не может быть отклонена без серьезного риска сделать неправильный вывод о наличии связи. В этом случае уравнение регрессии считается статистически незначимым. Но не отклоняется.

Стандартная ошибка коэффициента регрессии

Для оценки существенности коэффициента регрессии его ве­личина сравнивается с его стандартной ошибкой, т. е. определяется фактическое значение t-критерия Стьюдентa:

которое

затем сравнивается с табличным значением при определенном уровне значимости

и числе степеней свободы (n- 2).

Стандартная ошибка параметра а:

Значимость линейного коэффициента корреляции проверя­ется на основе величины ошибки коэффициента корреляции тr:

Общая дисперсия признака х:

Коэф. регрессии

Его величина показывает ср. изменение результата с изменением фактора на 1 ед.

Ошибка аппроксимации:

№ 5. ИНТЕРВАЛЫ ПРОГНОЗА ПО ЛИНЕЙНОМУ УРАВНЕНИЮ

РЕГРЕССИИ

Оценка стат. значимости параметров регрессии проводится с помощью t – статистики Стьюдента и путем расчета доверительного интервала для каждого из показателей. Выдвигается гипотеза Н0 о статистически значимом отличие показателей от 0 a = b = r = 0. Рассчитываются стандартные ошибки параметров a,b, r и фактич. знач. t – критерия Стьюдента.

Определяется стат. значимость параметров.

ta ›Tтабл - a стат. значим

tb ›Tтабл - b стат. значим

Находятся границы доверительных интервалов.

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что параметры a и b находясь в указанных границах не принимают нулевых значений, т.е. не явл.. стат. незначимыми и существенно отличается от 0.

№ 6. НЕЛИНЕЙНАЯ РЕГРЕССИЯ. ВИДЫ МОДЕЛЕЙ

Если между экономическими явлениями существуют нели­нейные соотношения, то они выражаются с помощью соответ­ствующих нелинейных функций: например, равносторонней ги­перболы

, параболы второй степени
и д.р.

Различают два класса нелинейных регрессий:

регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым па­раметрам;

• регрессии, нелинейные по оцениваемым параметрам.
Примером нелинейной регрессии по включаемым в нее объ­ясняющим переменным могут служить следующие функции:

• полиномы разных степеней

• равносторонняя гипербола

К нелинейным регрессиям по оцениваемым параметрам от­носятся функции:

• степенная

• показательная

• экспоненциальная

№ 7. СМЫСЛ КОЭФФИЦИЕНТА РЕГРЕССИИ.

Параметр b называется коэффициентом регрессии. Его вели­чина показывает среднее изменение результата с изменением фактора на одну единицу. Оценку коэффициента регрессии можно получить не обращаясь к методу наименьших квадратов. Альтернативную оценку параметра b можно найти исходя из содержания данного коэффициента: изменение результата

сопоставляют с изменением фактора

Общая сумма квадратов отклонений индивидуальных значений результативного признака у от среднего значения

вызвана влиянием множества причин. Условно разделим всю совокупность причин на две группы: изучаемый фактор х и прочие факторы.

Если фактор не оказывает влияния на результат, то линия регрес­сии на графике параллельна оси ох и

.Тогда вся дисперсия результативного признака обусловлена воздействием прочих факторов и общая сумма квадратов отклонений совпадет с остаточной. Если же прочие факторы не влияют на результат, то у связан с х функционально и остаточная сумма квадратов равна нулю. В этом случае сумма квадратов отклонений, объясненная регрессией, совпадает с общей суммой квадратов.

Поскольку не все точки поля корреляции лежат на линии регрессии, то всегда имеет место их разброс как обусловленный вли­янием фактора х, т. е. регрессией у по х, так и вызванный действием прочих причин (необъясненная вариация). Пригод­ность линии регрессии для прогноза зависит от того, какая часть общей вариации признака у приходится на объясненную вариа­цию

Очевидно, что если сумма квадратов отклонений, обусловленная регрессией, будет больше остаточной суммы квадратов, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат у

Любая сумма квадратов отклонений связана с числом степе­ней свободы , т. е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n ис числом определяемых по ней констант. Применительно к исследуемой проблеме число степеней свободы должно показать, сколько независимых откло­нений из п возможных требуется для образования данной суммы квадратов.

№8. ПРИМЕНЕНИЕ МНК К МОДЕЛЯМ НЕЛИНЕЙНЫМ ОТНОСИТЕЛЬНО ВКЛЮЧАЕМЫХ ПЕРЕМЕННЫХ И ОЦЕНИВАЕМЫХ ПАРАМЕТРОВ.

Нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Она определяет­ся, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам. Так, в парабо­ле второй степени y=a0+a1x+a2x2+ε заменяя переменные x=x1,x2=x2, получим двухфакторное урав­нение линейной регрессии: у=а01х12х2+ ε

Парабола второй степени целесообразна к применению, если для определенного интервала значений фактора меняется харак­тер связи рассматриваемых признаков: прямая связь меняется на обратную или обратная на прямую. В этом случае определяется значение фактора, при котором достигается максимальное (или минимальное), значение результативного признака: приравнива­ем к нулю первую производную параболы второй степени:

, т.е. b+2cx=0 и x=-b/2c

Применение МНК для оценки параметров параболы второй степени приводит к следующей системе нормальных уравнений:

Решение ее возможно методом определителей:


В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразо­ванным уравнениям. Если в линейной модели и моделях, нели­нейных по переменным, при оценке параметров исходят из кри­терия
min, то в моделях, нелинейных по оцениваемым параметрам, требование МНК применяется не к исходным дан­ным результативного признака, а к их преобразованным величи­нам, т. е.ln y, 1/y. Так, в степенной функции
МНК применяется к преобразованному уравнению lny = lnα + β ln x ln ε. Это значит, что оценка параметров основывается на миними­зации суммы квадратов отклонений в логарифмах.
Соответственно если в линейных моделях
то в моделях, нелинейных по оцениваемым параметрам,
. Вследствие этого оценка параметров оказываются несколько смещенной.