Смекни!
smekni.com

Сравнительный анализ динамики и выявление внутригодовых колебаний розничного товарооборота области (стр. 2 из 6)

Прежде чем анализировать основную тенденцию (тренд) или циклические колебания, необходимо исключить сезонную ком­поненту и проверить гипотезу о существовании тренда.

Для этого можно использовать метод проверки разностей средних уровней. Суть этого метода состоит в делении ряда на две части и нахождении их средних и дисперсий по формулам:

,

где n – число уровней ряда;

;

Затем мы находим расчетное значение с помощью статистики Стьюдента:

;

Затем полученное значение сравниваем с критическим табличным значением , которое равно 3,18 (число степеней свободы равно n1 + n2 - 2).

Сравнив критическое значение с расчетным, делаем вывод о наличии или отсутствии тренда в рыду динамики.

В нашем случае Трасч. = 5,0528 и 4,2246 для первого и второго варианта соответственно. Т. к. в обоих случаях Тр. > Ткр., то гипотезу об отсутствии тренда отклоняем.

После ее исклю­чения из колеблемости уровней времен­ного ряда, рассчитаем уравнение тренда, воспользовавшись ли­нейной функцией

,

где

;

;

;

С помощью полученного уравнения тренда выполним экстра­поляцию на один год.

Найденные таким образом значения не учитывают сезонные колебания в объеме товарооборота. Для учета сезонной состав­ляющей уровень, полученный в результате экстраполяции, ум­ножают на индекс сезонности, т.е.

где

- экстраполируемый уровень с учетом сезонных колеба­ний.

3.2 Корреляционная зависимость между уровнями различных рядов динамики.

Применение методов классической теории корреляции в ди­намических рядах связано с некоторыми особенностями. Преж­де всего это наличие для большинства динамических рядов зави­симости последующих уровней от предыдущих.

Наличие зависимости между последующими и предшествую­щими уровнями динамического ряда в статистической литерату­ре называют автокорреляцией.

Коэффициент автокорреляции вычисляется по непосред­ственным данным рядов динамики, когда фактические уровни од­ного ряда рассматриваются как значения факторного признака, а уровни этого же ряда со сдвигом на один период принимаются в качестве результативного признака.

Коэффициент автокорреляции рассчитывается на основе фор­мулы коэффициента корреляции для парной зависимости:

,

где yt – фактические уровни ряда, а yt+1 – уровни того же ряда со сдвигом на 1 период.


4. Результаты работы программы.

Таблица 1 – Исходные данные (1 вариант).

Год

Янв.

Февр.

Март

Апр.

Май

Июнь

Июль

Авг.

Сент.

Окт.

Нояб.

Дек.

Итого

1-ый

92,4

77

50

36,6

67,5

53,3

70

74,8

80

85

95

106,4

888

2-ой

105

89

70

59

75

70

83

90

99

100

105

120

1065

3-ий

125

120

105

101

125

110

137

139

150

149

160

190

1611

4-ый

195

185

177

175

195

190

210

215

230

230

240

270

2512

5-ый

276

264

261

260

280

275

297

299

315

310

315

350

3502

Итого за весь период

793,4

735

663

631,6

742,5

698,3

797

817,8

874

874

915

1036,4

9578

Средний уровень за месяц

158,68

147

132,6

126,32

148,5

39,66

159,4

163,56

174,8

174,8

183

207,28

159,63333

Абсолютное отклонение от общей средней

-0,9533333

-12,633333

-27,033333

-33,313333

-11,133333

-19,973333

-0,2333333

3,9266667

15,166667

15,166667

23,366667

47,646667

Относительное отклонение от общей средней (в %)

-0,5972019

-7,9139695

-16,934642

-20,868657

-6,9743161

-12,512007

-0,1461683

2,4598037

9,5009397

9,5009397

14,637711

29,847567

Индекс сезонности

99,402798

92,08603

83,065358

79,131343

93,025684

87,487993

99,853832

102,4598

109,50094

109,50094

114,63771

129,84757


Таблица 2 – Исходные данные (2 вариант).

Год

Янв.

Февр.

Март

Апр.

Май

Июнь

Июль

Авг.

Сент.

Окт.

Нояб.

Дек.

Итого

1-ый

81,8

81

67,8

50,4

76,1

62

88

94,2

100

118

110,4

125

1054,999

2-ой

120

110

105

102

110

101

126

130

140

145

139

150

1478

3-ий

150

130

130

125

135

129

147

152

163

165

157

175

1758

4-ый

170

160

155

155

170

170

190

200

210

225

223

250

2278

5-ый

249

241

239

236

250

247

259

270

280

285

281

300

3137

Итого за весь период

770,8

722

696,8

668,4

741,1

709

810

846,2

893

938

910,4

1000

9705,7

Средний уровень за месяц

154,16

144,4

139,36

133,68

148,22

141,8

162

169,24

178,6

187,6

182,08

200

161,761

Абсолютное отклонение от общей средней

-7,602

-17,362

-22,402

-28,082

-13,542

-19,962

0,238

7,478

16,838

25,838

20,318

38,238

Относительное отклонение от общей средней (в %)

-4,699

-10,733

-13,849

-17,36

-8,371

-12,34

0,147

4,623

10,409

15,973

12,561

23,639

Индекс сезонности

95,301

89,267

86,151

82,64

91,629

87,66

100,147

104,623

110,409

115,973

112,561

123,639


Таблица 3 – Построение модели сезонной волны на основе гармоник ряда Фурье (1 вариант).