Смекни!
smekni.com

Рациональные методики поиска оптимальных путей сетевых графиков и их автоматизация на ЭВМ (стр. 2 из 6)

2 Теоретические основы сетевого планирования

Прежде, чем преступать к обоснованию рациональных методик поиска осо­бых путей сетевого графика, необходимо напомнить, что вообще собой представ­ляет сетевой график, и какими основными параметрами он характеризу­ется.

Итак, сетевой график – есть математическая модель упорядочивания про­ектных работ типа “Сигнальный граф” (см. пример на рис.2.1 ). Любой сигналь­ный граф состоит только из двух элементов: дуг и вершин. В контексте сетевого пла­нирования, дугами являются отдельные работы, изображаемые на сетевом графике в виде стрелок так, что начала стрелок, соответствует началам выполне­ния работ, концы стрелок – их завершению. Вершинами сигнального графа явля­ются так на­зывае­мые события, которые изображаются на сетевом графике в виде кружков, с поряд­ковыми номерами в нижних квадрантах. Как раз события сете­вого графика и служат для целей упорядочивания проектных работ, которое за­ключается в том, что исходящая из неко­торого события работа не может начаться, пока не завер­шаться все входящие в него работы.

Существует масса правил, узаконенных стандартом, придерживаться кото­рых необходимо при построении сетевых графиков. Наиболее важные из них:

− Любой сетевой график должен иметь начальное событие, ра­боты из ко­то­рого только исходят, и конечное событие, в которое они только входят;

− Любой путь сетевого графика должен быть полным. То есть, любая це­почка, непрерывно следующих друг за другом, последовательных во времени ра­бот, должна начинаться в исходном событии сетевого графика, а заканчиваться в конечном;

− Сетевой график не должен иметь замкнутых петель. То есть, недопус­тимо, чтобы конец некоторой работы являлся бы началом другой работы, предше­ствующей первой по времени.

Имея только структуру сетевого графика, невозможно разрешить вопрос о его оптимальности. Требуется проводить расчеты еще целого ряда, принятых па­раметров. К этим параметрам относятся:


ранние и поздние сроки наступления событий;

− ранние и поздние сроки начала и окончания работ;

− резервы времени работ и событий.

Ранний срок наступления события – это минимально возможный срок, необ­ходимый для выполнения всех работ, предшествующих данному событию. Расчёт ранних сроков наступления событий ведут в порядке – от начального собы­тия проекта (с номером 0) до завершающего. При расчёте принимают, что ран­ний срок наступления начального события равен 0. Для определения ран­него срока наступ­ления

-го события пользуются правилом, математически записывае­мым так:

, (2.1)

где

– ранний срок наступления рассматриваемого события,
;

– номер рассматриваемого события;

– номера предшествующих событий, соединенных с рассматривае­мым работами;

– ранний срок наступления
-го предшествующего события,
;

– длительность работы, соединяющей
-е предшествующее собы­тие с рассматриваемым,
.

Таким образом, ранний срок наступления

-го события – есть максимально воз­можная сумма из сумм ранних сроков наступления предшествующих событий и длитель­ностей работ соединяющих предшествующие события с рассматривае­мым. Забегая вперёд, надо сказать, что эти суммы равны ранним срокам окончания соответствующих работ. Тогда, ранний срок свершения события – есть макси­мальный из ранних сроков окончания, входящих в него работ.

Поздний срок наступления события – это максимально допустимый срок на­ступления рассматриваемого события, определяемый из условия, что после насту­пления этого события в свой поздний срок остаётся достаточно времени, чтобы выполнить следующие за ним работы. Расчёт поздних сроков наступлений собы­тий ведут в обратном порядке – от завершающего события проекта до на­чального (с номером 0). При расчёте принимают, что поздний срок на­сту­пления завершаю­щего события совпадает с его ранним сроком наступле­ния. Для расчёта позднего срока наступления

-го события пользуются правилом, матема­тически записывае­мым так:

, (2.2)

где

– поздний срок наступления рассматриваемого события,
;

– номер рассматриваемого события;

– номера последующих событий, соединённых с рассматриваемым работами;

– поздний срок наступления
-го последующего события,
;

– длительность работы, соединяющей
-е последующее событие с рассматриваемым,
.

Таким образом, поздний срок наступления

-го события – есть минимально воз­можная разность из разностей поздних сроков наступления последующих событий и дли­тельностей работ, соединяющих последующие события с рассматриваемым. Забегая вперёд, необходимо сказать, что эти разности равны позд­ним срокам на­чала соответствующих работ. Тогда, поздний срок свершения события – есть ми­нимальный среди поздних сроков начала, исходящих из него работ.

Зная ранний и поздний сроки наступления события, можно определить ре­зерв времени события:

, (2.3)

где

– резерв времени рассматриваемого события,
.

Резерв времени события показывает насколько можно отсрочить наступление со­бытия по сравнению с его ранним сроком наступления без изменения об­щей про­должительности всего проекта.

Ранний срок начала работы совпадает с ранним сроком наступления её на­чального события, а ранний срок окончания работы превышает его на величину продолжительности этой работы:

; (2.4)

, (2.5)

где

– ранний срок начала работы, исходящей из
-го события и входящей в
-е событие,
;

– ранний срок окончания данной работы,
;

– длительность этой работы,
;

– раннее начало события, из которого исходит рассматриваемая работа,
;

Поздний срок окончания работы совпадает с поздним сроком наступ­ления её конечного события, а поздний срок начала работы меньше на величину продолжи­тельности этой работы: