Смекни!
smekni.com

Методология и методы принятия решения (стр. 8 из 11)

По общему целевому назначению эконо­мико-математические модели делятся на теоретико-анали­тические, используемые при изучении общих свойств и за­кономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач анализа, прогнозирования и управления.

По степени агрегирования объектов моделирования модели разделяются на макроэкономические и микроэкономические. Хотя между ними и нет четкого раз­граничения, к первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как микроэкономические модели связаны, как правило, с та­кими звеньями экономики, как предприятия и фирмы.

Экономико-математические модели могут классифициро­ваться также по характеристике математиче­ских объектов, включенных в модель, другими сло­вами, по типу математического аппарата, используемого в модели. По этому признаку могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д.

4. Метод линейного программирования в задачах оптимизации плана производства

Линейное программирование – это метод выбора не отрицательных значений переменных минимизирующих или максимизирующих значения линейной целевой функции, при наличии ограничений.

При небольшой размерности переменных до 10-ти в задачах линейного программирования (ЛП) используются итерационные процедуры ввиде конечного числа шагов, пи решении системы линейных уравнений, которые получили название симплексный метод.

Симплекс – многогранник.

Симплексный метод – это совокупность итерации, совершаемая ЛПР от отправного наихудшего варианта целевой функции к экстремальному значению целевой функции, при заданной системе ограничений; в качестве экстремума минимальное или максимальное значение целевой функции. При этом целевая функция и задача ЛП обладают свойством двойственности (т.е. минимум целевой функции может быть всегда заменен максимумом, путем смены знаков самой целевой функции).

Использование графического способа удобно только при решении задач ЛП с двумя переменными. При большем числе переменных необходимо применение алгебраического аппарата. Рассмотрим общий метод решения задач ЛП, называемый симплекс-методом.

Информация, которую можно получить с помощью симплекс-метода, не ограничивается лишь оптимальными значениями переменных. Симплекс-метод фактически позволяет дать экономическую интерпретацию полученного решения и провести анализ модели на чувствительность.

Процесс решения задачи линейного программирования носит итерационный характер: однотипные вычислительные процедуры в определенной последовательности повторяются до тех пор, пока не будет получено оптимальное решение. Процедуры, реализуемые в рамках симплекс-метода, требуют применения вычислительных машин - мощного средства решения задач линейного программирования.

Симплекс-метод - это характерный пример итерационных вычислений, используемых при решении большинства оптимизационных задач.

Рассмотрим использование симплексного метода ЛП на примере задач оптимизации плана производства.

Пример №1:

Условие задачи (постановка):

Найти план производства предприятия обеспечивающий максимум прибыли.

Предприятие производит два вида продукции в трех цехах:

А 80

Б 60

В 100

Установлено соответственно: 80;60 и 100 единиц оборудования.

Нормы использования оборудования для производства за 1 час единицы продукции представлены в таблице в машино/часах:

ЦЕХ

ВИДЫ ПРОДУКЦИИ

1

2

А

4

2

Б

1

3

В

2

3

Прибыль первого вида продукции 10 рублей

Прибыль единицы второй продукции 8 рублей

Требуется определить объем выпуска первого и второго вида продукции доставляющего максимум прибыли.

Решение:

1. Составляем модель.

Пусть х1 искомый объем u1 продукции первого вида;

х2 - u2 объем выпуска второго вида продукции.

Цель: максимальная прибыль.

Модель:

10х1 – прибыль от реализации u первого вида продукции

2 – прибыль от реализации u второго вида.

Целевая функция L(х1х2) = С1х1 + С2х2 = 10х1 + 8х2

С1 = 10; С2 = 8 – коэффициенты при переменных в целевой функции.

Планируемое использование машин по цехам не должно превышать наличие этого оборудования в цехах (по цехам) Þ отсюда система неравенств.

А – 4х1 + 2х2 £ 80 ограничение по

Б – 1х1 + 3х2 £ 60 использованию

В – 2х1 + 3х2 £ 100 оборудования,

условие не отрицательности.

х1 ³ 0; х2 ³ 0.

Для решения задачи симплексным методом в условиях ограничений принимается работа каждой машины в цехе в машино/часах.

Система неравенств приводится к каноническому виду, путем добавления дополнительных переменных и перевода неравенств в уравнение:

1 + 2х2 + х3 £ 80

х1 + 3х2 + х4 £ 60

1 + 3х2 + х5 £ 100

Переведем систему неравенств в уравнение:

х3 = 80 – (4х1 + 2х2) сколько машин

х4 = 60 – (х1 + 3х2) нужно

х5 = 100 – (2х1 + 3х2) (машино/часов)

Дополнительные переменные должны быть введены в целевую функцию, которая будет иметь вид:

L(х1х2) = С1х1 + С2х2 + С3х3 + С4х4 + С5х5 = 10х1 + 8х2 + 0х3 + 0х4 + 0х5

стремится к максимуму

х1 > 0; х2 > 0; х3 = 0; х4 = 0; х5 = 0.

Выразим х3; х4 и х5 через х1 и х2

х3 = 80 – 4х1 - 2х2

х4 = 60 – х1 - 3х2

х5 = 100 – 2х1 - 3х2

Модель составлена и в этой модели имеются: х1; х2 – независимые (свободные) переменные; х3; х4; х5 – базисные переменные.

По составленной модели используют итерационные процедуры метода, составим альтернативные варианты решения системы уравнений с пятью неизвестными.

Первым решением будет х1 = 0; х2 = 0; х3 = 80; х4 = 60; х5 = 100.

Целевая функция будет равняться: L=10*0 + 8*0 + 0*80 + 0*60 + 0*100=0

Используя систему уравнений, составим отправную таблицу:

Сб

Хб

В

10 = С1

8 = С2

0 = С3

0 = С4

0 = С5

Х1

Х2

Х3

Х4

Х5

0

Х3

80

4

2

1

0

0

0

Х4

60

1

3

0

1

0

0

Х5

100

2

3

0

0

1

Zj - Сj

Z0 = 0

-10

-8

0

0

0

Ключевой столбец Генеральный элемент Ключевая строка

В отправной симплексной таблице введены следующие значения:

Сб – коэффициенты при базисных переменных целевой функции.

Хб - базисные переменные.

В - столбец свободных членов.

Zj - определяется как сумма попарных произведений коэффициентов Сб на элементы столбца В.

Z0 = 0*80+0*60+0*100 = 0

Сj - коэффициент целевой функции при переменной.