Смекни!
smekni.com

Методология и методы принятия решения (стр. 10 из 11)

Сб

Хб

В

4 = С1

2 = С2

0 = С3

0 = С4

0 = С5

Х1

Х2

Х3

Х4

Х5

0

Х3

28

3

2

1

0

0

0

Х4

20

2

1

0

1

0

0

Х5

10

1

0

0

0

1

Zj - Сj

Z0 = 0

-4

-2

0

0

0

Z0 = 0*28+0*20+0*10 = 0

Z1 – С1 Þ Z1 = 0*3+0*2+0*1-4 = -4

Z2 = 0*2+0*1+0*0-2 = -2

Получение второго базисного решения, и решения вообще, надо преобразовать, первую таблицу во вторую получив улучшенное (решение) значения.

28/3=9,33; 20/2=10; 10/1=10.

Составляем вторую базисную таблицу:

Сб

Хб

В

3 = С1

2 = С2

0 = С3

0 = С4

0 = С5

Х1

Х2

Х3

Х4

Х5

3

Х1

28/3

1

2/3

1/3

0

0

0

Х4

4/3

0

-1/3

-2/3

1

0

0

Х5

2/3

0

-2/3

-1/3

0

1

Zj – Сj

Z = 112/3

0

2/3

4/3

0

0

Для столбца свободных членов (В):

20-28*2/3=(60-56)/3=4/3

10-28*1/3=(30-28)/3=2/3

Для столбца х2 по тому же правилу:

1-2*2/3=1-4/3=-1/3

0-2*1/3=0-2/3=-2/3

Для столбца х3:

0-1*2/3=0-2/3=-2/3

0-1*1/3=0-1/3=-1/3

Определяем индексную строку:

0-28*(-4)/3=0+112/3=112/3=Z

-2-2*(-4)/3=-2-(-8/3)=2/3

0-1*(-4)/3=0-(-4/3)=4/3

Z0 = 112/3 – самая большая прибыль.

Из таблицы №2 видно, что в индексной строке отсутствуют отрицательные значения и, следовательно, невозможно дальнейшее назначение итерационных процедур. Полученное значение прибыли Z0 = 112/3 рублей прибыли в час, является оптимальным.

Пример №3:

Условие задачи (постановка):

Найти план производства предприятия обеспечивающий максимум прибыли.

Предприятие производит два вида продукции в трех цехах:

А 87

Б 7

В 24

Установлено соответственно: 87;7 и 24 единиц оборудования.

Нормы использования оборудования для производства за 1 час единицы продукции представлены в таблице в машино/часах:

ЦЕХ

ВИДЫ ПРОДУКЦИИ

1

2

А

5

3

Б

4

0

В

2

3

Прибыль первого вида продукции 10 рубля

Прибыль единицы второй продукции 2 рубля

Требуется определить объем выпуска первого и второго вида продукции доставляющего максимум прибыли.

Решение:

1. Составляем модель.

Пусть х1 искомый объем u1 продукции первого вида;

х2 - u2 объем выпуска второго вида продукции.

Цель: максимальная прибыль.

Модель:

10х1 – прибыль от реализации u первого вида продукции

2 – прибыль от реализации u второго вида.

Целевая функция L(х1х2) = С1х1 + С2х2 = 10х1 + 2х2

С1 = 10; С2 = 2 – коэффициенты при переменных в целевой функции.

Планируемое использование машин по цехам не должно превышать наличие этого оборудования в цехах (по цехам) Þ отсюда система неравенств.

А – 5х1 + 3х2 £ 87 ограничение по

Б – 4х1 + 0х2 £ 7 использованию

В – 2х1 + 3х2 £ 24 оборудования,

условие не отрицательности.

х1 ³ 0; х2 ³ 0.

Для решения задачи симплексным методом в условиях ограничений принимается работа каждой машины в цехе в машино/часах.

Система неравенств приводится к каноническому виду, путем добавления дополнительных переменных и перевода неравенств в уравнение:

1 + 3х2 + х3 £ 87

1 + х4 £ 7

1 + 3х2 + х5 £ 24

Переведем систему неравенств в уравнение:

х3 = 87 – (5х1 + 3х2) сколько машин

х4 = 7 – 4х1 нужно

х5 = 24 – (2х1 +3х2) (машино/часов)

Дополнительные переменные должны быть введены в целевую функцию, которая будет иметь вид:

L(х1х2) = С1х1 + С2х2 + С3х3 + С4х4 + С5х5 =10х1 + 2х2 + 0х3 + 0х4 + 0х5

стремится к максимуму

х1 > 0; х2 > 0; х3 = 0; х4 = 0; х5 = 0.

Выразим х3; х4 и х5 через х1 и х2

х3 = 87 – 5х1 - 3х2

х4 = 7 – 4х1

х5 = 24 – 2х1 – 3х2

Модель составлена и в этой модели имеются: х1; х2 – независимые (свободные) переменные; х3; х4; х5 – базисные переменные.

По составленной модели используют итерационные процедуры метода, составим альтернативные варианты решения системы уравнений с пятью неизвестными.

Первым решением будет х1 = 0; х2 = 0; х3 = 87; х4 = 7; х5 = 24.

Целевая функция будет равняться: L = 10*0 + 2*0 + 0*87 + 0*7 + 0*24=0

Используя систему уравнений, составим отправную таблицу:

Сб

Хб

В

10 = С1

2 = С2

0 = С3

0 = С4

0 = С5

Х1

Х2

Х3

Х4

Х5

0

Х3

87

5

3

1

0

0

0

Х4

7

4

0

0

1

0

0

Х5

24

2

3

0

0

1

Zj - Сj

Z0 = 0

-10

-2

0

0

0

Z0 = 0*87+0*7+0*24 = 0

Z1 – С1 Þ Z1 = 0*5+0*4+0*2-10 = -10

Z2 = 0*3+0*0+0*3-2 = -2

Получение второго базисного решения, и решения вообще, надо преобразовать, первую таблицу во вторую получив улучшенное (решение) значения.

87/5=17,4; 7/4=1,75; 24/2=12.

Составляем вторую базисную таблицу:

Сб

Хб

В

3 = С1

2 = С2

0 = С3

0 = С4

0 = С5

Х1

Х2

Х3

Х4

Х5

0

Х3

313/4

0

3

1

-5/4

0

4

Х1

7/4

1

0

0

¼

0

0

Х5

41/2

0

3

0

-1/2

1

Zj – Сj

Z = 35/2

0

-2

0

5/2

0

Для столбца свободных членов (В):