Смекни!
smekni.com

Математическое программирование и моделирование в экономике и управлении (стр. 4 из 5)

Δ13=M-10

Δ15=1

Δ21=6

Δ22=4

Δ24=6

Δ25=5

Δ31=2

Δ33=M-10

Δ34=2

Δ35=1

Δ41=0

Δ44=3

Δ52=7

Δ54=2

Δ55=2

F=7x1+10x2+Mx3+6x4+7x1+10x2+Mx3+6x4+9x5+5x6+6x7+8x8+8x9+6x10+11x11+

+10x12+6x13+11x14+9x15+7x16=min

при ограничениях:

F=7*45+6*155+5*125+6*125+6*125+11*25+9*125+6*255=6300

Оптимальный план поставок для деревообрабатывающих предприятий, обеспечивающий минимальные транспортные затраты в сумме 6300000 руб., заключается в следующем:

1-ое лесозаготовительное предприятие поставляет 45 т. м3 1-ому деревообрабатывающему предприятию;

1-ое – 4-ому: 255 т. м3;

2-ое – 2-ому: 125 т. м3;

2-ое – 3-ему: 125 т. м3;

3-е – 2-ому: 125 т. м3;

3-е – 3-ему: 25 т. м3;

у 3-го предприятия остаётся запас в 120 т. м3;

4-е – 1-ому: 155 т. м3;

4-е – 3-ему: 125 т. м3;

имеется альтернативный приведённому план поставок при тех же транспортных издержках:

1-ое – 4-ому: 255 т. м3;

2-ое – 2-ому: 125 т. м3;

2-ое – 3-ему: 125 т. м3;

3-е – 1-ому: 25 т. м3;

3-е – 2-ому: 125 т. м3;

у 3-го предприятия остаётся запас в 120 т. м3;

4-е – 1-ому: 130 т. м3;

4-е – 3-ему: 150 т. м3.

Оптимизация замены оборудования. Динамическое программирование в планировании производством и управлении им.

Под динамическим программированием понимается вычислительный метод, опирающийся на аппарат рекуррентных соотношений.

Динамическое программирование – планирование многошагового процесса, при котором на каждом шаге решения, оптимизируется только этот шаг. Идея динамического программирования заключается в том, что отыскание множества переменных, что имело место в линейном программировании, заменяется на многократное отыскание одной или очень небольшого числа исходных переменных.

Весь процесс динамического программирования планируется в виде составления функциональных уравнений, которые решаются на каждом шаге.

Под функциональными уравнениями понимаются такие уравнения, в которых выражается функциональная зависимость между множеством функций – это сущность и отличие динамического программирования от линейного.

Содержание проблемы и сущность алгоритма решения.

Процесс решения задачи осуществляется следующим способом. Берётся период в N лет. К этому времени оборудование отработало некое количество лет и пришло t0 возраста.

Решение задачи начинается с последнего N-го года, составляется пара функциональных уравнений в предположении, что пришло старое оборудование без замены:

1) рассчитывается доход от эксплуатации оборудования при замене;

2) рассчитывается доход от эксплуатации оборудования в течение года при условии его старения.

Вторая гипотеза: к N-ому году оборудование могло прийти замененным в каком-то году, тогда составляется пара уравнений, в которых определяется доход за год от эксплуатации единицы оборудования при условии замены или сохранения оборудования.

Шаг второй: рассматриваем (N-1) год.

Рассматриваются две гипотезы:

· пришло старое оборудование без замены;

· пришло оборудование, которое было заменено.

Шаг третий: рассматривается (N-2) год при двух гипотезах, составляются уравнения, рассчитывается доход.

Решение продолжается по всем шагам. На первом году будет одна гипотеза, что пришло старое оборудование, используемое t0 лет.

Составление функциональных уравнений.

Под критерием оптимальности может быть принят любой экономический показатель, если он хорошо подготовлен, т.е. он должен быть отчищен от факторов, не зависящих от работы оборудования.

r(t) – стоимость продукции, созданной единицей оборудования возраста t лет за год.

U(t) – затраты на содержание в течение года единицы оборудования возраста t лет.

С(t) – затраты на замену единицы оборудования возраста t лет (затраты на приобретение, отладку за вычетом остаточной стоимости старого оборудования).

i – год установки нового оборудования.

Доход замены оборудования рассчитывается:

f’=r(t)-U(t)-C(t)

Доход от сохранения оборудования:

f’’=r(t)-U(t)

Если f’>f’’, то оборудование необходимо заменить, если f’≤f’’ – оставить.

Шаг 1-ый: N-ый год.

Гипотеза 1: пришло старое оборудование возраста N+t0 лет.

Тогда доход за N-ый год при условии замены или сохранения оборудования:

Гипотеза 2: пришло новое оборудование.

Возьмём N-t-й год:

Шаг 2-ой: (N-1)-ый год.

Рассчитывается суммарный условный доход, при условии замены или сохранения.

Гипотеза 1: пришло старое оборудование.

Гипотеза 2: пришло новое оборудование.

Рассмотрим пример решения задачи о замене оборудования.

Исходная информация по старому оборудованию (t0=7):

Показатель

Значение показателей на единицу оборудования возраста (лет) в тыс. руб.

8

9

10

11

12

r(t)

100

87

74

67

60

U(t)

27

32

39

42

40

C(t)

135

148

150

165

172

Исходная информация по новому оборудованию:

Показатель

Значение показателей на единицу оборудования возраста (лет) в тыс. руб.

0

1

2

3

4

r1(t)

135

105

85

80

75

U1(t)

12

15

20

22

25

C1(t)

-

152

160

170

180

r2(t)

125

100

90

84

U2(t)

13

15

17

20

C2(t)

-

132

142

152

r3(t)

136

120

116

U3(t)

15

16

19

C3(t)

-

156

162

r4(t)

145

135

U4(t)

20

17

C4(t)

-

180

r5(t)

162

U5(t)

35

I этап (5 год):