Смекни!
smekni.com

Математическое моделирование в сейсморазведке (стр. 3 из 10)

Наличие сейсмических временных разрезов позволяет отказаться от линейной интерполяции и осуществить построение модели с помощью следующих приемов:

1. Производится тщательная стратиграфическая привязка отраженных волн в точках глубоких скважин, причем наиболее надежная привязка осуществляется по временному разрезу, в который "врезаны" диаграммы скорости по АК в масштабе двойного времени и синтетические сейсмограммы.

2. На сейсмическом разрезе границы путем парал­лельного переноса точно совмещаются в точках расположения скважин с теми геологическими границами, которые определены в результате стра­тиграфической привязки (см. п. 1) как доминирующие при формировании отраженной волны. Если по какой-либо скважине получается невязка, то она "разбрасывается" по линейному закону в глубины сейсмической грани­цы между скважинами.

3. На полученный в результате такой коррекции сейсмический разрез, который можно назвать базисной толстослоистой моделью, в точках рас­положения скважин наносятся тонкослоистые модели, соответствующие моделируемому интервалу. В пределах моделируемого интервала про­водятся границы отдельных литологически однородных тонких слоев. При этом в зависимости от предполагаемой степени сложности двумерной модели подходы к ее построению могут быть различными. В зонах выдер­жанной корреляции сейсмических данных, которые, как правило, соответ­ствуют согласному или близкому к нему залеганию пород, эти границы проводятся так, чтобы они соединяли отметки по скважинам и были парал­лельны сейсмическим границам между скважинами. Участки изменений сейсмических данных (схождение осей синфазности, изменения формы и интенсивностей колебаний, разрывы в корреляции) тщательно анализи­руются и с учетом данных по скважинам задаются возможные модели изменений мощности слоев, литолого-фациальных замещений, появления углеводородов и др. Нередки случаи, когда в пределах одного модели­руемого интервала встречаются участки различной сложности.

4. Задаются упругие параметры (скорости и плотности) во всех слоях модели, при этом в точках между скважинами эти параметры находятся путем линейной интерполяции значений, полученных ранее в процессе формирования одномерных моделей в точках расположения скважин.

§ 2.2.3. Построение моделей по данным сейсморазведки

Если на профиле нет скважин, то модель может быть построена только по сейсмическим дан­ным. В этом случае целесообразно применять такие процедуры.

1. На основе кинематической интерпретации временного разреза строит­ся базисная толстослоистая модель. Используемые при этом средние и плас­товые скорости берутся из данных скоростного анализа, а в условиях Волго-Уральской провинции – чаще из интерполированных или экстрапо­лированных сейсмокаротажных данных.

2. Интервал временного разреза, соответствующий моделируемому объекту, преобразуется во временной разрез волновых сопротивлений по методике псевдоакустического каротажа (ПАК).

3. В ряде точек профиля строятся одномерные модели волновых сопро­тивлений. Затем от волновых сопротивлений с использованием формулы s =аVb, где s – плотность, V – скорость, переходят к оцен­кам скорости и плотности. Полученные таким способом одномерные мо­дели скорости целесообразно проверять на соответствие со значениями пластовых скоростей, взятыми из интерполированных или экстраполиро­ванных сейсмокаротажных данных.

4. Одномерные тонкослоистые модели наносятся на базисную толсто-слоистую модель, после чего, так же как и в предыдущем параграфе, строится комбинированная двумерная модель.

Необходимо отметить, что из-за использования только сейсмических данных, имеющих ограниченный частотный диапазон, тонкослоистую часть комбинированной модели следует рассматривать как эффективную сейсмическую модель.

Если полученные по описанным выше методикам двумерные модели предполагается использовать для интерпретации в итеративном режиме, то их целесообразно называть моделями нулевого приближения (моделями 0-приближения).

§ 2.2.4. Влияние нефтегазонасыщенности на упругие свойства пород

Сведения об изменении упругих свойств (скорости и плотности) пород-коллекторов в зависимости от типа насыщающего флюида можно получить прямым измерением в скважинах, расположенных в контуре залежи и за контуром, изучением керна при различном его насыщении, путем теоретических расчетов.

Прямые измерения в скважинах с помощью сейсмического просвечи­вания и СК выполнены в ограниченном объеме и полученные результаты не всегда достаточно точны. Обобщение данных показывает, что в нефтенасыщенных песчаных коллекто­рах при глубинах 1500–3000 м и средней пористости 20% скорость продоль­ных волн уменьшается на 6–12%, в газонасыщенных коллекторах – на 15–30% по сравнению с водонасыщенным коллектором.

При измерениях на ультразвуковых частотах (АК) величина различия скоростей, обусловленная водо- и нефтегазонасыщенностью пород, меньше, чем на сейсмических частотах. Поэтому использование данных об уменьшении скоростей при нефтегазонасыщении, полученных на ультразвуковых частотах (в скважинах или на образцах керна), для модельных расчетов в сейсмическом диапазоне частот возможно лишь после их коррекции. Удвоение величин понижения скорости будет, по-видимому, вполне допустимым. Данных об изменении плотности при различном насыщении коллектора, которые были бы получены путем прямых измерений в скважинах, пока не имеется.

При отсутствии данных прямых измерений на керне или в скважине (или если эти данные недостаточно надежны) влияние нефтегазонасыщения на скорость и плотность может быть оценено теоретически, с помощью формул из теории распространения упругих волн в пористых средах. Для определения скорости продольных волн в сейсмическом диапазоне частот используется уравнение

, (2.1)

где Uп и sп – параметры, зависящие соответственно от упругости и плот­ности флюида; Uск и sск – параметры, характеризующие упругость и плотность скелета (остова) породы.

Значения U и s следующим образом выражаются через свойства твердо­го материала породы и насыщающего ее флюида:

1) sск = sтв (1 – Kп), где sтв – плотность материала, слагающего твердую фазу породы, Kп – пористость;

2) sп = sфKп, где sф – плотность флюида, т. е. плотность воды, нефти, газа или их смеси;

3)

, где bск – сжимаемость скелета (относительное изменение объема скелета при всестороннем упругом сжатии породы), Gск – модуль сдвига скелета;

4)

где bтв – сжимаемость материала, слагающего скелет породы, bфсжимаемость флюида, величины bтв и bск связаны соотношением bск = bтв + Kпbп (bп – сжимаемость порового пространства).

При использовании формулы (2.1) основная трудность заключается в выборе величин bск и Gск.

Для приближенных расчетов можно использовать уравнение среднего времени (уравнение Уилли)

, (2.2)

где Vп – скорость в коллекторе, заполненном флюидом; Vск – скорость в скелете; Vф скорость во флюиде, Kп коэффициент пористости. Формула (2.2) справедлива для хорошо сцементированных пород. Величину плотности можно оценить по уравнению

sп = sск (1 – Kп) + sфKп, (2.3)

где sп – плотность коллектора, заполненного флюидом, sск – плотность скелета, sф – плотность флюида.

Если поры заполнены несколькими компонентами, например газ–вода, нефть–вода и т. д., то имеет место уравнение

sп = sск (1 – Kп) + sфKп + (sв – sф)SвKп,

где sв – плотность воды, Sв – коэффициент водонасыщенности.

Глава 3. Методика интерпретации на основе итеративного моделирования

Раздел 3.1. Особенности получения и обработки сейсмических данных, интерпретируемых на основе моделирования

Главное требование, предъявляемое к данным сейсмических наблюдений, которые интерпретируются с помощью итеративного моделирования, состоит в повышенном отношении сигнал/помеха. Опыт сейсмомоделирования показывает, что нижний предел отношения энергии сигнала к энергии помехи, равный 10 – 15, является достаточным для того, чтобы в процессе итератив­ного подбора параметров модели достичь достаточно высокую степень сходства СВР и реального временного разреза (РВР). Это предельное значение установлено на основе тесто­вого моделирования и сопоставления СВР и РВР по нор­мированной функции взаимной корреляции (НФВК) и значений отношения сигнал/помеха на РВР по одинаковым фрагментам временных разрезов. На рис. 4 показан пример такого сопоставления по профилю 39 Северо-Маркинской площади, из которого видно, что сходство СВР и РВР до 0,8 и выше удавалось получить только на участках, где отношение сигнал/по­меха на РВР достигало 10 – 15 и выше.

Важным является также требование иметь на реальных временных разрезах достаточно высокую временную разрешенность отражений. При повышении разрешенности появляется возможность не только более де­тально, т.е. в более узких временных окнах, производить сравнение СВР и РВР и последующую коррекцию модели, но и получать более детальные псевдоакустические разрезы, необходимые для построения модели 0-приближения.