Смекни!
smekni.com

Имитационное моделирование (стр. 2 из 3)

Нередко такой прием оказывается проще, чем по­пытки построить аналитическую модель. Для сложных операций, в которых участвует большое число элемен­тов (машин, людей, организаций, подсобных средств), в которых случайные факторы сложно переплетены, где процесс — явно немарковскпй, метод статистиче­ского моделирования, как правило, оказывается проще аналитического (а нередко бывает и единственно воз­можным).

В сущности, методом Монте-Карло может быть ре­шена любая вероятностная задача, но оправданным он становится только тогда, когда процедура розыгрыша проще, а не сложнее аналитического расчета. Приведем пример, когда метод Монте-Карло возможен, но край­не неразумен. Пусть, например, по какой-то цели производится три независимых выстрела, из которых каж­дый попадает в цель с вероятностью 1/2. Требуется найти вероятность хотя бы одного попадания. Элементарный расчет дает нам вероятность хотя бы одного попадания равной 1 — (1/2)3 = 7/8. Ту же задачу можно решить и «розыгрышем», статистическим моделированием. Вместо «трех выстрелов» будем бросать «три монеты», считая, скажем, герб—за попадание, решку — за «промах». Опыт считается «удачным», если хотя бы на одной из монет выпадет герб. Произведем очень-очень много опытов, подсчитаем общее количество «удач» и разделим на число N произведенных опытов. Таким образом, мы получим частоту события, а она при большом числе опытов близка к вероятности. Ну, что же? Применить такой прием мог бы разве человек, вовсе не знающий теории вероятностей, тем не менее, в принципе, он возможен.

Метод Монте-Карло- это численный метод решения математических задач при помощи моделирования случайных величин.

Рассмотрим простой пример иллюстрирующий метод (Приложение 1).

Пример 1. Предположим, что нам нужно вычислить площадь плоской фигуры S. Это может быть произвольная фигура с криволинейной границей,

заданная графически или аналитически, связная или состоящая из нескольких кусков. Пусть это будет фигура изображенная на рис. 1, и

предположим, что она вся расположена внутри единичного квадрата.

Выберем внутри квадрата N случайных точек. Обозначим через F число

точек, попавших при этом внутрь S. Геометрически очевидно, что площадь

S приближенно равна отношению F/N. Чем больше N, тем больше точность

этой оценки.

Две особенности метода Монте-Карло.

Первая особенность метода - простая структура вычислительного алгоритма.

Вторая осо­бенность метода - погрешность вычислений, как правило, пропорциональна D/N2, где D - неко­торая постоянная, N - число испытаний. Отсюда видно, что для того, чтобы уменьшить по­грешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т. е. объем работы) в 100 раз.

Ясно, что добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат ну­жен с небольшой точностью (5-10%). Способ применения метода Монте-Карло по идее доволь­но прост. Чтобы получить искусственную случайную выборку из совокупности величин, опи­сываемой некоторой функцией распределения вероятностей, следует:

1. Построить график или таблицу интегральной функции распределения на основе ряда чи­сел, отражающего исследуемый процесс (а не на основе ряда случайных чисел), причем значе­ния случайной переменной процесса откладываются по оси абсцисс (х), а значения вероятности (от 0 до 1) - по оси ординат (у).

2.С помощью генератора случайных чисел выбрать случайное десятичное число в преде­лах от 0 до 1 (с требуемым числом разрядов).

3. Провести горизонтальную прямую от точки на оси ординат соответствующей выбран­ному случайному числу, до пересечения с кривой распределения вероятностей.

4.Опустить из этой точки пересечения перпендикуляр на ось абсцисс.

5.Записать полученное значение х. Далее оно принимается как выборочное значение.

б.Повторить шаги 2-5 для всех требуемых случайных переменных, следуя тому порядку, в котором они были записаны. Общий смысл легко понять с помощью простого примера: количе­ство звонков на телефонную станцию в течение 1 минуты соответствует следующему распреде­лению:

Кол - во звонков Вероятность Кумулятивная вероятность
О 0,10 0,10

1 0,40 0,50

2 0,30 0,80

3 0,15 0,95

4 0,05 1,00

Предположим, что мы хотим провести мысленный эксперимент для пяти периодов времени.

Построим график распределения кумулятивной вероятности. С помощью генератора слу­чайных чисел получим пять чисел, каждое из которых используем для определения количества звонков в данном интервале времени.

Период времени Случайное число Количество звонков

1 0,09 О

2 0,54 2

3 0,42 1

4 0,86 3

5 0,23 1

Взяв еще несколько таких выборок, можно убедиться в том, что если используемые числа действительно распределены равномерно, то каждое из значений исследуемой величины будет появляться с такой же частотой, как ирреальном мире», и мы получим результаты, типичные для поведения исследуемой системы.

Вернемся к примеру. Для расчета нам нужно было выбирать случайные

точки в единичном квадрате. Как это сделать физически?

Представим такой эксперимент. Рис.1. (в увеличенном масштабе) с фигурой

S и квадратом повешен на стену в качестве мишени. Стрелок, находившийся

на некотором расстоянии от стены, стреляет N раз, целясь в центр квадрата.

Конечно, все пули не будут ложиться точно в центр: они пробьют на мишени N случайных точек. Можно ли по этим точкам оценить площадь S.

Результат такого опыта показан на рис. 2.(см. Приложение 2)

Ясно, что при высокой квалификации стрелка результат опыта будет очень плохим, так как почти все пули будут ложиться вблизи центра и попадут в S.

Нетрудно понять, что наш метод вычисления площади будет справедлив только тогда, когда случайные точки будут не просто «случайными», а еще и «равномерно разбросанными» по всему квадрату.

В задачах исследования операций метод Монте-Карло применяется в

трех основных ролях:

1) при моделировании сложных, комплексных операций, где

присутствует много взаимодействующих случайных факторов;

2) при проверке применимости более простых, аналитических

методов и выяснении условий их применимости;

3) в целях выработки поправок к аналитическим формулам типа

«эмпирических формул» в технике.

Пример. Оценка геологических запасов.

Для оценки величины извлекаемых запасов необходимо, прежде всего, определить вели­чину суммарных или геологических запасов.

Анализ структурных ловушек.

Для оценки содержания в структурной ловушке нефти и/или газа, поисковые и промысло­вые геологи и геофизики должны изучить характер структурной ловушки. Такое исследование необходимо для определения возможной величины геологических запасов. Область изменения запасов определяется комбинацией следующих оценочных показателей: объем осадочных по­род (RV), пористости (F), перовой водонасыщенности (Sw), эффективная мощность (NP) g.

Определение вероятных значений параметра.

На этом этапе геологи должны оценить значение вероятностей для параметров, исполь­зуемых при подсчете геологических запасов. Каждому параметру приписываются интерваль­ные значения вероятностей, исходя из экспертных оценок геологов..

Анализ графиков вероятности.

Графики, показанные на рис. 1,2,3,4,5 являются графиками накопленной вероятности. Не­прерывная кривая представляет вероятность того, что величина рассматриваемого параметра будет «равна или больше» чем величина в той точке горизонтальной оси, которая пересекается вертикальной линией, проектируемой от кривой, с перпендикуляром к вертикальной оси для любых значений от 0 до 100 %. Кривая построена по данным гистограмм, которые показаны как заштрихованные столбики. Гистограммы представляют собой экспертную оценку поиско­вых и промысловых геологов и геофизиков, которые обеспечивают информацию в следующей форме:

- по нашему мнению , вероятность того, что объем пород залежи находиться в интервале от 0 до 390 тыс. футов составляет 10%;

- по нашей оценке вероятность того, что объем пород равен от 380 до 550 куб. футов , составля­ет 15% и так далее.

Эти оценки геологов накапливаются, и в итоге получается обобщенная кривая вероятно­сти . На основании этой кривой можно экстраполировать значения ожидаемых вероятностей для изучаемых параметров.

Подсчет геологических запасов.

Объем геологических запасов вычисляется с помощью следующей формулы:

RVxFx(l-Sw)x NPx, где Fv - коэффициент приведения нефти к поверхностным ус­ловиям.


Использование средних величин для получения приблизительной оценки геологических запасов.

При оценке приблизительного количества нефти в месторождении будем использовать следующие значения параметров:

- среднее значение объема пород составляет 1,35 млн. акрофутов (1 акрофут = 7760 бар­релей или около 1230 м3)

- средняя пористость - 17%

- средняя водонасыщенность - 20%

- средняя эффективная мощность - 75%

- коэффициент приведения - 1,02 (в пластовых условиях нет свободного газа). Теперь подставим эти значения в формулу