Смекни!
smekni.com

Анализ экономических задач симплексным методом (стр. 5 из 7)

§7. Анализ задачи об оптимальном использовании сырья.

Исходя из специализации и своих технологических возможностей предприятие может выступать четыре вида продукции. Сбыт любого количества обеспечен. Для изготовления этой продукции используются трудовые ресурсы, полуфабрикаты и станочное оборудование. Общий объём ресурсов, расход каждого ресурса за единицу продукции, приведены в таблице 1. Требуется определить план выпуска, доставляющий предприятию максимум прибыли. Выполнить после оптимизационный анализ решения и параметров модели.

Ресурсы

Выпускаемая продукция

Объём

Ресурсов

Трудовые ресурсы, чел-ч

4

2

2

8

4800

Полуфабрикаты, кг

2

10

6

0

2400

Станочное оборудование, станко-ч

1

0

2

1

1500

Цена единицы продукции, р.

65

70

60

120

Решение.

Пусть

- объёмы продукции
планируемый к выпуску;
- сумма ожидаемой выручки.

Математическая модель пря мой задачи:

Математическая модель двойственной задачи:

По условиям примера найти:

1. Ассортимент выпускаемой продукции, обеспечивающий предприятию максимум реализации (максимум выручки)

2. Оценки ресурсов, используемых при производстве продукции.

Симплексным методом решаем прямую задачу, модель которой составлена выше в таблице1.

После второй итерации все оценки оказались отрицательными, значит, найденный опорный план является оптимальным:

,

Основные переменные

показывают, что продукцию
и
выпускать нецелесообразно, а продукции
следует произвести 400 ед.,
- 500 ед.

Дополнительные переменные

и
показывают, что ресурсы используются полностью
, а вот равенство
свидетельствует о том, что 200 единиц продукции
осталось неиспользованным.

Номера ит.

БП

Сб

65

70

60

120

0

0

0

0

0

4800

4

2

2

8

1

0

0

0

2400

2

10

6

0

0

1

0

0

1500

1

0

2

1

0

0

1

0

-65

-70

-60

-120

0

0

0

1

120

600

1/2

1/4

1/4

1

1/8

0

0

0

2400

2

0

6

0

0

1

0

0

900

1/2

-1/4

7/4

0

-1/8

0

1

72000

-5

-40

-30

0

15

0

0

2

120

500

5/12

-1/6

0

1

1/8

-1/24

0

60

400

1/3

5/3

1

0

0

1/6

0

0

200

-1/12

-19,6

0

0

-1/8

-7/24

1

84000

5

10

0

0

15

5

0

Выпишем из таблицы2. Компоненты оптимального плана двойственной задачи – двойственные оценки. В канонической форме прямой задачи переменные

- являются свободными, а дополнительные переменные
- базисными. В канонической форме двойственной задачи свободными будут переменные
- а базисными