Пусть дана задача
Дадим геометрическую интерпретацию элементов этой задачи. Каждое из ограничений (12), (13) задает на плоскости
Перейдем к геометрической интерпретации целевой функции. Пусть область допустимых решений ЗЛП — непустое множество, например многоугольник
Выберем произвольное значение целевой функции . Получим
Найдём частные производные целевой функции по
Частная производная (14) ((15)) функции показывает скорость ее возрастания вдоль данной оси. Следовательно,
Вектор —
Вектор
Из геометрической интерпретации элементов ЗЛП вытекает следующий порядок ее графического решения.
1. С учетом системы ограничений строим область допустимых решений
2. Строим вектор
3. Проводим произвольную линию уровня
4. При решении задачи на максимум перемещаем линию уровня в направлении вектора
5. Определяем оптимальный план
§3.Симплексный метод.
Общая идея симплексного метода (метода последовательного улучшения плана) для решения ЗЛП состоит
1) умение находить начальный опорный план;
2) наличие признака оптимальности опорного плана;
3) умение переходить к нехудшему опорному плану.
Пусть ЗЛП представлена системой ограничений в каноническом виде:
Говорят, что ограничение ЗЛП имеет предпочтительный вид, если при неотрицательной правой части
Пусть система ограничений имеет вид
Сведем задачу к каноническому виду. Для этого прибавим к левым частям неравенств дополнительные переменные
которая имеет предпочтительный вид
В целевую функцию дополнительные переменные вводятся с коэффициентами, равными нулю
Пусть далее система ограничений имеет вид
Сведём её к эквивалентной вычитанием дополнительных переменных
Однако теперь система ограничений не имеет предпочтительного вида, так как дополнительные переменные
Пусть исходная ЗЛП имеет вид
причём ни одно из ограничений не имеет предпочтительной переменной. М-задача запишется так:
Задача (4)-(6) имеет предпочтительный план. Её начальный опорный план имеет вид
Если некоторые из уравнений (2) имеют предпочтительный вид, то в них не следует вводить искусственные переменные.
Теорема. Если в оптимальном плане