Не в каждом банке данных могут быть выделены все типы пользователей. При разработке информационных систем с использованием настольных СУБД администратор банка данных, администратор приложении и разработчик часто существовали в одном лице. Однако при построении современных сложных корпоративных баз данных, которые используются для автоматизации всех или большей части бизнес-процессов в крупной фирме или корпорации, могут существовать и группы администраторов приложений, и отделы разработчиков. Наиболее сложные обязанности возложены на группу администратора БД.
1.3 Архитектура базы данных
В процессе научных исследований, посвященных тому, как именно должна быть устроена СУБД, предлагались различные способы реализации. Самым жизнеспособным из них оказалась предложенная американским комитетом по стандартизации ANSI (American National Standards Institute) трехуровневая система организации БД, изображенная на рис. 1
Рис. 1 Трехуровневая модель системы управления базой данных, предложенная ANSI
1) Уровень внешних моделей — самый верхний уровень, где каждая модель имеет свое «видение» данных. Этот уровень определяет точку зрения на БД отдельных приложений. Каждое приложение видит и обрабатывает только те данные, которые необходимы именно этому приложению. Например, система распределения работ использует сведения о квалификации сотрудника, но ее не интересуют сведения об окладе, домашнем адресе и телефоне сотрудника, и наоборот, именно эти сведения используются в подсистеме отдела кадров.
2) Концептуальный уровень — центральное управляющее звено, здесь база данных представлена в наиболее общем виде, который объединяет данные, используемые всеми приложениями, работающими с данной базой данных. Фактически концептуальный уровень отражает обобщенную модель предметной области (объектов реального мира), для которой создавалась база данных. Как любая модель, концептуальная модель отражает только существенные, с точки зрения обработки, особенности объектов реального мира.
3) Физический уровень — собственно данные, расположенные в файлах или в страничных структурах, расположенных на внешних носителях информации.
Эта архитектура позволяет обеспечить логическую (между уровнями 1 и 2) и физическую (между уровнями 2 и 3) независимость при работе с данными. Логическая независимость предполагает возможность изменения одного приложения без корректировки других приложений, работающих с этой же базой данных. Физическая независимость предполагает возможность переноса хранимой информации с одних носителей на другие при сохранении работоспособности всех приложений, работающих с данной базой данных. Это именно то, чего не хватало при использовании файловых систем. Выделение концептуального уровня позволило разработать аппарат централизованного управления базой данных[4].
1.4 Классификация банков данных
Банки данных — это очень сложная система, которую можно классифицировать по целому спектру признаков, касающихся как банка в целом, так и отдельных его компонентов.
По назначению БнД бывают:
- информационно-поисковые;
- специализированные по отдельным областям науки и техники;
- банки данных АСУ для организационно-экономической информации;
- банки данных для систем автоматизации научных исследований и производственных испытаний;
- банки данных для систем автоматизированного проектирования.
По архитектуре поддерживаемой вычислительной среды БнД бывают централизованными (интегрированными) и распределенными.
По виду информации, которая сохраняется, банки делятся на банки данных, банки документов и банки знаний.
По языку общения пользователя с БД различают системы с базовым языком (открытые системы) и с собственным языком (закрытые системы).
В открытых системах языковым средством общения с БД один из языков программирования, например C, Pascal. В таких системах для общения с БД нужен посредник, то есть программист, который владеет избранным языком программирования.
Закрытые системы имеют собственный язык общения. Он, как правило, намного проще, чем язык программирования. Поэтому в таких системах не нужен посредник-программист для общения с БД. Сами пользователи, которые имеют соответствующую подготовку, смогут работать с БД.
Одними из основополагающих в концепции баз данных являются обобщенные категории «данные» и «модель данных».
Понятие «данные» в концепции баз данных — это набор конкретных значений, параметров, характеризующих объект, условие, ситуацию или любые другие факторы. Примеры данных: Смирнов Михаил Иванович, $30 и т. д. Данные не обладают определенной структурой, данные становятся информацией тогда, когда пользователь задает им определенную структуру, то есть, осознает их смысловое содержание. Поэтому центральным понятием в области баз данных является понятие модели. Не существует однозначного определения этого термина, у разных авторов эта абстракция определяется с некоторыми различиями, но, тем не менее, можно выделить нечто общее в этих определениях[5].
Модель данных — это некоторая абстракция, которая, будучи приложима к конкретным данным, позволяет пользователям и разработчикам трактовать их уже как информацию, то есть сведения, содержащие не только данные, но и взаимосвязь между ними.
На рис. 2 представлена классификация моделей данных.
Рис. 2 Классификация моделей данных
В соответствии с рассмотренной ранее трехуровневой архитектурой мы сталкиваемся с понятием модели данных по отношению к каждому уровню. И действительно, физическая модель данных оперирует категориями, касающимися организации внешней памяти и структур хранения, используемых в данной операционной среде. В настоящий момент в качестве физических моделей используются различные методы размещения данных, основанные на файловых структурах: это организация файлов прямого и последовательного доступа, индексных файлов и инвертированных файлов, файлов, использующих различные методы хеширования, взаимосвязанных файлов. Кроме того, современные СУБД широко используют страничную организацию данных. Физические модели данных, основанные на страничной организации, являются наиболее перспективными.
Наибольший интерес вызывают модели данных, используемые на концептуальном уровне. По отношению к ним внешние модели называются подсхемами и используют те же абстрактные категории, что и концептуальные модели данных.
1.5 Этапы проектирования баз данных
Проектирование баз данных — это итерационный, многоэтапный процесс принятия обоснованных решений в процессе анализа информационной модели предметной области, требований к данным со стороны прикладных программистов и пользователей, синтеза логических и физических структур данных, анализа и обоснования выбора программных и аппаратных средств. Этапы проектирования баз данных связаны с многоуровневой организацией данных. Рассматривая вопрос проектирования баз данных, будем придерживаться такого многоуровневого представления данных: внешнего, инфологического, логического (даталогического) и внутреннего.
Внешний уровень это часть (подмножество) концептуальной модели, необходимая для реализации какого-либо запроса или прикладной программы. То есть, если концептуальная модель выступает как схема, поддерживаемая конкретной СУБД, то внешний уровень — это некоторая совокупность подсхем, необходимых для реализации конкретной прикладной программы или запроса пользователя.
Существует также другая точка зрения, в соответствии с которой под внешним уровнем понимают более общие понятия, связанные с изучением и анализом информационных потоков предметной области и их структуризацией. Некоторые авторы вводят вспомогательный уровень (промежуточный между внешним и даталогическим уровнями), который называется инфологическим. Он может выступать как самостоятельный или быть составной частью внешнего уровня. Такая концепция более целесообразна с точки зрения понимания процесса проектирования БД[6].
При проектировании БД на внешнем уровне необходимо изучить функционирование объекта управления, для которого проектируется БД, всю первичную и выходную документацию с точки зрения определения того, какие именно данные необходимо сохранять в базе данных. Внешний уровень это, как правило, словесное описание входных и выходных сообщений, а также данных, которые целесообразно сохранять в БД. Описание внешнего уровня не исключает наличия элементов дублирования, избыточности и несогласованности данных. Поэтому для устранения этих аномалий и противоречий внешнего описания данных выполняется инфологическое проектирование. Инфологическая модель является средством структуризации предметной области и понимания концепции семантики данных. Инфологическую модель можно рассматривать в основном как средство документирования и структурирования формы представления информационных потребностей, которая обеспечивает непротиворечивое общение пользователей и разработчиков системы.
Инфологический уровень представляет собой информационно-логическую модель (ИЛМ) предметной области, из которой исключена избыточность данных и отображены информационные особенности объекта управление без учета особенностей и специфики конкретной СУБД. То есть инфологическое представление данных ориентированно преимущественно на человека, который проектирует или использует базу данных[7].