Многоуровневость системы может существенно усложнить понимание ее структуры. Сложные системы зачастую обладают многоуровневыми механизмами регуляции: компоненты сложной системы могут сами по себе являться сложными системами. Подобное строение сложной системы влечет за собой существование петель обратной связи между различными уровнями, как положительных, так и отрицательных. Поскольку результат поведения элемента системы влияет на него самого, изменяя его характеристики или поведение, важнейшей особенностью поведения элементов сложных систем является обучение.
Зависимость от предшествующего развития и от начальных условий системы приводит к тому, что, во-первых, несущественные отклонения в начальных условиях функционирования системы могут вызвать «эффект резонанса» и существенно повлиять на ее развитие, и, во-вторых, зачастую невозможно сказать, как развивалась бы система, если бы в определенной точке она продолжила развитие по другому пути. Сложными являются такие системы, эволюция которых очень чувствительна к изменению начальных условий или малым отклонениям от траекторий развития системы, в которых существует огромное количество сценариев развития23. В сложных системах могут наблюдаться и явления бифуркации.
Гетерогенность элементов сложной системы — определяющий фактор ее разнообразия. Предполагается, что система демонстрирует интересные свойства в том числе и потому, что существуют качественные и количественные различия между различными элементами системы.
Наличие самоподдерживающихся процессов выражается в способности некоторых систем к авторепродукции и самообразованию. В случае неорганических систем это проявляется в наличии механизмов, зарождающихся в рамках системы и поддерживающих ее функционирование за счет внутренних ресурсов.
Д. С. Чернавский пишет о существовании трех различных состояний сложной системы. Первое состояние характеризуется сравнительно быстрым движением системы в сторону одного из возможных аттракторов после бифуркации. Второе состояние — медленное развитие вплоть до достижения следующей точки бифуркации. В третьем состоянии система полностью теряет устойчивость, достигает очередной точки бифуркации, и в ней, благодаря нелинейным обратным связям, могут возникать неустойчивые и хаотические состояния.
Современная наука способна давать вероятностные прогнозы развития сложных систем. Однако в рамках эволюционной теории акцент делается на понимании и объяснении поведения сложной системы, на объяснении возникающих в ней явлений, а не на прогнозе.
Проблемы эволюционной экономики
На наш взгляд, основной проблемой эволюционной экономики сегодня является то, что для проверки моделей и гипотез используется позитивистская методология, аналогичная методологии неоклассики. Именно поэтому эволюционные модели проходят столь тщательную эмпирическую проверку и соревнуются с неоклассическими моделями в их способности давать согласующиеся с эмпирическими данными предсказания. В качестве примера можно назвать эволюционную модель экономического роста, разработанную Нельсоном и Уинтером24. В ней сделан акцент на более глубоком, чем в рамках неоклассической модели Р. Солоу, понимании процесса экономического роста, но при этом модель прошла калибровку таким образом, чтобы соответствовать стилизованным фактам и прогнозам неоклассики.
Развитие эволюционной экономики в этом направлении представляется неверным по двум основным причинам. Во-первых, открытые стохастические модели лишь случайно могут демонстрировать лучший количественный прогноз, чем эконометрическая модель. Во-вторых, такое соревнование между эволюционными и неоклассическими моделями приводит к тому, что исследователи «жертвуют» объяснением в пользу лучшей прогностической способности, добавляя все больше допущений ad hoc, чтобы точнее соответствовать определенному позитивистскому критерию. В результате альтернативные экономические течения грешат еще большим инструментализмом, чем неоклассическая наука. В рамках альтернативных экономических теорий труднее разрабатывать модели, способные давать более точные предсказания, поскольку таким теориям присущ больший реализм, а значит, модели «подгоняются» под эмпирические данные в еще большей степени, чем в неоклассической теории. В результате эволюционная экономика может оказаться лишь еще одним инструментом в ящике М. Фридмена. Напротив, переосмысление методологических оснований эволюционной теории должно способствовать ее развитию как самостоятельной парадигмы.
Другой важной проблемой является то, что представители эволюционной экономики, «воспитанные» в рамках различных теоретических дисциплин, подчас говорят на разных языках, что приводит к чрезмерному разнообразию теорий, не имеющих под собой единого фундамента. Чтобы обрести целостную структуру, эволюционный подход должен развиваться несколько иначе. Необходимо сохранить приоритет познания перед предвидением, объяснения — перед прогнозом. Именно в этом состоит смысл соотнесения методологии эволюционной экономики с философией критического реализма. Эволюционная экономика должна сделать выбор методологических приоритетов, согласующихся с этой философской позицией. Критический реализм способен вернуть эволюционную экономику на правильный путь развития с помощью смещения фокуса анализа на объяснение причин происходящих в экономике явлений посредством анализа порождающих их и управляющих ими механизмов.
Критический реализм как методология эволюционной экономики
По нашему мнению, наиболее важной исходной установкой эволюционной теории является признание сложности экономической системы. В рамках критического реализма социально-экономическая система также рассматривается как истинно сложная открытая система, в которой невозможно определить точные взаимозависимости между наблюдаемыми событиями. Общество, как совокупность структур или институтов, расположено на более высоком системном уровне, оно несводимо к составляющим ее частям, хотя и не существует без них, и демонстрирует некоторые свойства исключительно на системном уровне. Поэтому объяснение поведения системы, заключающееся в раскрытии тенденций ее функционирования, само по себе представляется нелегкой задачей.
Принудительное «закрытие» системы в рамках неоклассического подхода хоть и позволяет провести наглядный строгий анализ, но не отражает действительность. В экономический анализ искусственно вводятся внутреннее и внешнее условия закрытости25, в соответствии с которыми одна и та же причина всегда порождает один и тот же эффект и одно и то же следствие вызывается одной и той же причиной соответственно. Признание же факта открытости экономической системы заставляет пересмотреть принципы построения экономических моделей. Мы полагаем, что критический реализм может помочь в осмыслении этих принципов.
Поскольку приходится вводить абстракции на уровне теоретизирования, необходимо каким-то образом упрощать сложность социально-экономической системы и искусственно ее «закрывать». Однако это следует делать очень аккуратно, чтобы не отсечь ее важные характеристики. Такая абстрактная система обычно называется «квазиоткрытой». К необходимости принудительного закрытия системы в теории приходит даже Лоусон26. Э. Сэйер пишет, что «многие формы социальной организации влекут за собой тенденции, которые создают относительную регулярность событий посредством определенных правил поведения»27, что делает возможным «структурную стабильность»28 благодаря следованию социальным конвенциям, даже при неотъемлемой неопределенности. Это делает принципиально возможным исследование открытой социально-экономической системы.
Но как выявлять эти регулярности? Ведь в экономике нельзя использовать экспериментальные данные для построения выводов и однозначного тестирования теорий. Одиночные эмпирические ряды фиксируют лишь результат одного эксперимента, выполненного в определенном пространственно-временном диапазоне и при определенных условиях, имя которому — реальная экономическая действительность. А на основании единственного условного эксперимента нельзя ни строить универсальные выводы относительно всей системы, ни принимать судьбоносные решения относительно теорий, руководствуясь позитивистскими принципами.
В рамках критического реализма объяснение явления заключается в выявлении самого глубокого онтологического уровня тенденций, реализация которого определенным способом привела к наблюдаемой эмпирической картине, но могла привести и к другому явлению. Понимание явления заключается в его объяснении в терминах механизмов, «населяющих» самый нижний онтологический уровень и порождающих наблюдаемые события и эмпирические данные на более высоких уровнях. Прогнозирование в рамках экономической системы хотя и возможно, но оно носит скорее вероятностный и качественный, а не количественный характер, поскольку во многих ситуациях не существует способов предугадать, как именно реализуются выявленные порождающие механизмы. По нашему мнению, наиболее адекватным методом исследования в этой ситуации является метод компьютерных симуляций.
Метод компьютерных симуляций
Данный метод уже довольно давно применяется в рамках эволюционной теории, с его помощью были получены многие содержательные выводы29. Использование симуляций было предложено еще в классической книге Нельсона и Уинтера как один из способов реализации эволюционных моделей. Они выбрали этот метод потому, что эволюционные процессы — результат функционирования сложной социально-экономической системы. В силу этого различные экономические системы, по меньшей мере, трудно представимы в формальном виде, особенно если учесть эволюционный характер происходящих в системе изменений. Но есть и более фундаментальные причины выбора этого метода.