Следует отметить, что биологические нейроны структурно сложнее, чем упрощенное объяснение существующих искусственных нейронов, которые являются элементами современных искусственных нейронных сетей.
2.4 Искусственный нейрон и нейронные сети
История создания искусственных нейронов уходит своими корнями в 1943 год, когда шотландец МакКаллок и англичан Питтс создалитеорию формальных нейросетей, а через пятнадцать лет Розенблатт изобрёл искусственный нейрон (перцептрон), который впоследствии и лёг в основу нейрокомпьютера.
Несмотря на существенные различия, отдельные типы нейронных сетей обладают несколькими общими чертами.
Во-первых, основу каждой нейросети составляют относительно простые, в большинстве случаев – однотипные, элементы (ячейки), имитирующие работу нейронов мозга. Далее под нейроном будет подразумеваться искусственный нейрон, то есть ячейка нейросети. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Он обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Общий вид нейрона приведен на рисунке. Каждый синапс характеризуется величиной синаптической связи или ее весом wi, который по физическому смыслу эквивалентен электрической проводимости.
Искусственный нейрон
Текущее состояние нейрона определяется, как взвешенная сумма его входов. Выход нейрона есть функция его состояния.
Теоретически число слоев и число нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированной микросхемы, на которых обычно реализуется нейросеть. Чем сложнее нейронная сеть, тем масштабнее задачи, подвластные ей.
Выбор структуры нейросети осуществляется в соответствии с особенностями и сложностью задачи. Для решения некоторых отдельных типов задач уже существуют оптимальные, на сегодняшний день, конфигурации. Если же задача не может быть сведена ни к одному из известных типов, разработчику приходится решать сложную проблему синтеза новой конфигурации. При этом он руководствуется несколькими основополагающими принципами: возможности сети возрастают с увеличением числа ячеек и плотности связей между ними и числом выделенных слоев; введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о ее динамической устойчивости; сложность алгоритмов функционирования сети (в том числе, www.uznai.su например, введение нескольких типов синапсов – возбуждающих, тормозящих и др.) также способствует усилению мощи нейросети.
Ряд исследователей рассматривают нейрон как значительно более сложную систему обработки информации, предполагая, что основную роль в обучении играют молекулярные механизмы внутри нейрона. В частности, в цикле работ Л.Е. Цитоловского с сотрудниками экспериментально продемонстрировано изменение порога командных нейронов (а не весов синапсов) при выработке и угашении условного рефлекса, и построены математические модели, демонстрирующие возможный механизм внутринейронного молекулярного обучения.
2.5 Обучение нейросети
Процесс функционирования нейросети, то есть сущность действий, которые она способна выполнять, зависит от величин синаптических связей, поэтому, задавшись определенной структурой, отвечающей какой-либо задаче, разработчик сети должен найти оптимальные значения всех переменных весовых коэффициентов (некоторые синаптические связи могут быть постоянными).
Этот этап называется обучением нейросети, и от того, насколько качественно он будет выполнен, зависит способность сети решать поставленные перед ней проблемы во время эксплуатации. На этапе обучения кроме параметра качества подбора весов важную роль играет время обучения. Как правило, эти два параметра связаны обратной зависимостью и их приходится выбирать на основе компромисса.
Обучение нейронной сети может вестись с учителем или без него. В первом случае сети предъявляются значения как входных, так и желательных выходных сигналов, и она по некоторому внутреннему алгоритму подстраивает веса своих синаптических связей. Во втором случае выходы нейросети формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы.
Существует великое множество различных алгоритмов обучения, которые делятся на два больших класса: детерминистские и стохастические. В первом из них подстройка весов представляет собой жесткую последовательность действий, во втором – она производится на основе действий, подчиняющихся некоторому случайному процессу.
2.6 Классификации
2.6.1 Бинарные и аналоговые
Первые из них оперируют с двоичными сигналами, и выход каждого нейрона может принимать только два значения: логический ноль («заторможенное» состояние) и логическая единица («возбужденное» состояние). В аналоговых сетях выходные значения нейронов способны принимать непрерывные значения.
2.6.2 Синхронные и асинхронные
В первом случае в каждый момент времени свое состояние меняет лишь один нейрон. Во втором – состояние меняется сразу у целой группы нейронов, как правило, у всего слоя. Алгоритмически ход времени в нейросети задается итерационным выполнением однотипных действий над нейронами.
2.6.3 Настройка весов
- Сети с фиксированными связями – весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи;
- Сети с динамическими связями по данным сайта www.skladrabot.ru – для них в процессе обучения происходит настройка синаптических весов.
2.6.4 Применяемая модель нейронной сети
Сети прямого распространения – все связи направлены строго от входных нейронов к выходным. К таким сетям относятся, например: простейший персептрон (разработанный Розенблаттом) и многослойный персептрон.
Реккурентные нейронные сети – сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя.
Радиально базисные функции – вид нейронной сети, имеющий скрытый слой из радиальных элементов и выходной слой из линейных элементов. Сети этого типа довольно компактны и быстро обучаются. Радиально базисная сеть обладает следующими особенностями: один скрытый слой, только нейроны скрытого слоя имеют нелинейную активационную функцию и синаптические веса входного и скрытого слоев равны единицы.
Самоорганизующиеся карты или Сети Кохонена – такой класс сетей, как правило, обучается без учителя и успешно применяется в задачах распознавания. Сети такого класса способны выявлять новизну во входных данных: если после обучения сеть встретится с набором данных, непохожим ни на один из известных образцов, то она не сможет классифицировать такой набор и тем самым выявит его новизну. Сеть Кохонена имеет всего два слоя: входной и выходной, составленный из радиальных элементов.
2.6.5 Характер обучения
- Обучение с учителем — выходное пространство решений нейронной сети известно
- Обучение без учителя — нейронная сеть формирует выходное пространство решений только на основе входных воздействий. Такие сети называют самоорганизующимися
- Обучение с подкреплением — система назначения штрафов и поощрений от среды
2.7 Применение нейронных сетей
После того, как нейронная сеть обучена, мы можем применять ее для решения полезных задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно, действовать и в тех ситуациях, в которых он не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Так же и нейронная сеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные. Например, мы можем нарисовать букву «А» другим почерком, а затем предложить заранее обученной нейронной сети классифицировать новое изображение. Веса этой нейронной сети хранят достаточно много информации о сходстве и различиях букв, поэтому можно рассчитывать на правильный ответ и для нового варианта изображения.
2.8 Отличия от машин с архитектурой фон Неймана
Вычислительные системы, основанные на искусственных нейронных сетях, обладают рядом качеств, которые отсутствуют в машинах с архитектурой фон Неймана (но присущи мозгу человека):
- массовый параллелизм;
- способность к обучению и обобщению;
- свойство контекстуальной обработки информации;
- толерантность к ошибкам;
- низкое энергопотребление.
3. Искусственная жизнь
3.1 Общие сведение
В конце 80-х — начале 90-х годов возникло одно интересное направление кибернетических исследований: «Искусственная жизнь» (английское название Artificial Life или Alife).
Основной мотивацией исследований искусственной жизни служит желание понять и промоделировать формальные принципы организации биологической жизни. Как сказал руководитель первой международной конференции по искусственной жизни К. Лангтон «основное предположение искусственной жизни состоит в том, что «логическая форма» организма может быть отделена от материальной основы его конструкции».