Смекни!
smekni.com

Моделирование поведения животных с использованией нейронных сетей (стр. 2 из 5)

1.7 Воспроизведение

Если агент поглощает достаточное количество пищи, чтобы достичь показателя 90% от максимального уровня энергии, то он допускается к участию в воспроизведении. Воспроизведение позволяет агентам, которые смогли выжить в окружающей среде, создать потомство (естественный отбор). При создании потомства агент изменяет веса своих нейронных сетей посредством произвольной мутации. Обучение в среде недоступно, однако то, что агент может воспроизводить себя, означает, что его нейронная сеть будет передана его потомку, что повторяет принцип эволюции Ламарка, поскольку характеристики агента передаются его потомству (ребёнок наследует нейронную сеть своего родителя).

Воспроизведение имеет последствия: ребёнок и родитель разделяют имеющуюся энергию пополам, при этом агент не может непрерывно воспроизводить сам себя.

1.8 Смерть

Агент может умереть двумя способами: либо он не может найти пищу и умирает от голода, либо его съест агент, который стоит выше в пищевой цепочке. В любом случае мёртвый агент удаляется из модели.

1.9 Соревновательность

Во время симуляции происходит своеобразное соревнование. Хищники постепенно разрабатывают нейронные сети, которые подходят для обнаружения и поедания травоядных, в то время как последние совершенствуют нейронные сети, которые помогают находить растения в среде и избегать хищников.

1.10 Мозг агента

Мозг агента может быть одной из многочисленных компьютерных конструкций. Существующие симуляции искусственной жизни используют принцип конечных автоматов, системы классификации или нейронные сети.

Как уже говорилось выше, в качестве мозга я использую нейронную сеть, построенную по принципу «Победитель получает всё», чтобы сохранить аналогию с биологической мотивацией.

Этот принцип применяется при осуществлении принятия решения и задач классификации. Он заключается в том, что решением считается такая альтернатива, у которой выходное значение соответствующего нейрона является максимальным.

2. Нейронные сети

2.1 Краткая история

Изучению человеческого мозга — тысячи лет. С появлением современной электроники, начались попытки аппаратного воспроизведения процесса мышления. Первый шаг был сделан в 1943 г. с выходом статьи нейрофизиолога Уоррена Маккалоха (Warren McCulloch) и математика Уолтера Питтса (Walter Pitts) про работу искусственных нейронов и представления модели нейронной сети на электрических схемах.

1949 г. — опубликована книга Дональда Хебба (Donald Hebb) «Организация поведения», где исследована проблематика настройки синаптических связей между нейронами.

1950-е гг. — появляются программные модели искусственных нейросетей. Первые работы проведены Натаниелом Рочестером (Nathanial Rochester) из исследовательской лаборатории IBM. И хотя дальнейшие реализации были успешными, эта модель потерпела неудачу, поскольку бурний рост традиционных вычислений оставил в тени нейронные исследования.

1956 г. — Дартмутский исследовательский институт искусственного интеллекта обеспечил подъем искусственного интеллекта, в частности, нейронных мереж. Стимулирование исследований искусственного интеллекта разделилось на два направления: промышленные применения систем искусственного интеллекта (экспертные системы) и моделирование мозга.

1958 г. — Джон фон Нейман (John fon Neumann) предложил имитацию простых функций нейронов с использованием вакуумных трубок.

1959 г. — Бернард Видроу (Bernard Widrow) и Марсиан Хофф (Marcian Hoff) разработали модели ADALINE и MADALINE (Множественные Адаптивные Линейные Элементы (Multiple ADAptive LINear Elements)). MADALINE действовала, как адаптивный фильтр, устраняющих эхо на телефонных линиях. Эта нейросеть до сих пор в коммерческом использовании.

Нейробиолог Френк Розенблатт (Frank Rosenblatt) начал работу над перцептроном. Однослойный перцептрон был построен аппаратно и считается классической нейросетью. Тогда перцептрон использовался для классификации входных сигналов в один из двух классов. К сожалению, однослойный перцептрон был ограниченым и подвергся критике в 1969 г., в книге Марвина Мински (Marvin Minsky) и Сеймура Пейперта (Seymour Papert) «Перцептроны».

Ранние успехи, способствовали преувеличению потенциала нейронных сетей, в частности в свете ограниченной на те времена электроники. Чрезмерное ожидание, процветающее в академическом и техническом мире, заразило общую литературу этого времени. Опасение, что эффект «мыслящей машины» отразится на человеке все время подогревалось писателями, в частности, серия книг Айзека Азимова про роботов показала последствия на моральных ценностях человека, в случае возможности интеллектуальных роботов выполнять функции человека.

Эти опасения, объединенные с невыполненными обещаниями, вызвали множество разочарований специалистов, подвергших критике исследования нейронных сетей. Результатом было прекращение финансирования. Период спада продолжался до 80-х годов.

1982 г. — к возрождению интереса привело несколько событий. Джон Хопфилд (John Hopfield) представил статью в национальную Академию Наук США. Подход Хопфилда показал возможности моделирования нейронных сетей на принципе новой архитектуры.

В то же время в Киото (Япония) состоялась Объединенная американо-японская конференция по нейронным сетям, которые объявили достижением пятой генерации. Американские периодические издания подняли эту историю, акцентируя, что США могут остаться позади, что привело к росту финансирования в области нейросетей.

С 1985 г. Американский Институт Физики начал ежегодные встречи — «Нейронные сети для вычислений».

1989 г. — на встрече «Нейронные сети для обороны» Бернард Видров сообщил аудитории о начале четвертой мировой войны, где полем боя являются мировые рынки и производства.

1990 г. — Департамент программ инновационных исследований защиты малого бизнеса назвал 16 основных и 13 дополнительных тем, где возможно использование нейронных сетей.

В настоящее время активно продолжаются исследования нейронных сетей и ведутся интенсивные работы по практическим применениям нейросетевых алгоритмов.

В нашей стране существует Всероссийская ассоциация нейроинформатики, объединяющая энтузиастов-нейросетевиков. Ассоциация имеет широкие международные связи, под эгидой ассоциации проведен ряд конференций, симпозиумов, выставок, совещаний.

Однако, несмотря на чрезвычайную активность исследований по нейронным сетям и нейрокомпьютерам, многое в этих исследованиях настораживает. Изучаемые алгоритмы выглядят как бы «вырванным куском» из общего осмысления работы нервной системы. Исследуются те алгоритмы, для которых удается построить хорошие модели, а не наиболее важные для понимания свойств мышления, работы мозга и для создания систем искусственного интеллекта.

Настораживает также чрезмерная упрощенность понимания работы нейронный сетей, при котором нейроны рассматриваются как суммирующие пороговые элементы, а обучение сети происходит путем модификации синапсов.

2.2 Аналогия с мозгом

Точная работа мозга человека — все еще тайна. Тем не менее, некоторые аспекты этого удивительного процессора известны. Базовым элементом мозга человека являются специфические клетки, известные как нейроны, способные запоминать, думать и применять предыдущий опыт к каждому действию, что отличает их от остальных клеток тела.

Кора головного мозга человека является плоской поверхностью, образованной из нейронов, толщиной от 2 до 3 мм площадью около 2200 см2, что вдвое превышает площадь поверхности стандартной клавиатуры. Кора главного мозга содержит около 1011 нейронов, что приблизительно равно числу звезд Млечного пути. Каждый нейрон связан с 103 — 104 другими нейронами. В целом мозг человека имеет приблизительно от 1014 до 1015 взаимосвязей.

Сила человеческого ума зависит от числа базовых компонент, многообразия соединений между ними, а также от генетического программирования и обучения.

Индивидуальный нейрон является сложным, имеет свои составляющие, подсистемы и механизмы управления и передает информацию через большое количество электрохимических связей. Насчитывают около сотни разных классов нейронов. Вместе нейроны и соединения между ними формируют недвоичный, нестойкий и несинхронный процесс, отличающийся от процесса вычислений традиционных компьютеров. Искусственные нейросети моделируют лишь главнейшие элементы сложного мозга, вдохновляющие ученых и разработчиков к новым путям решения проблемы.

2.3 Биологический нейрон

Нейрон (нервная клетка) является особой биологической клеткой, которая обрабатывает информацию. Она состоит из тела клетки — сомы (soma), и двух типов внешних древовидных ответвлений: аксона (axon) и дендритов (dendrites). Тело клетки содержит ядро (nucleus), которое содержит информацию о наследственных свойствах нейрона, и плазму, обладающую молекулярными средствами для производства необходимых нейрону материалов. Нейрон получает сигналы (импульсы) от других нейронов через дендриты (приемники) и передает сигналы, сгенерированные телом клетки, вдоль аксона (передатчика), который в конце разветвляется на волокна (strands). На окончаниях волокон находятся синапсы (synapses).

Синапс является элементарной структурой и функциональным узлом между двумя нейронами (волокно аксона одного нейрона и дендрит другого). Когда импульс достигает синаптического окончания, высвобождаются определенные химические вещества, называемые нейротрансмиттерами. Нейротрансмиттеры проходят через синаптичную щель и, в зависимости от типа синапса, возбуждают или тормозят способность нейрона-приемника генерировать электрические импульсы.

Результативность синапса настраивается проходящими через него сигналами, поэтому синапсы обучаются в зависимости от активности процессов, в которых они участвуют. Эта зависимость от предыстории действует как память, которая, возможно, отвечает за память человека. Нейроны способны запоминать, думать и применять предыдущий опыт к каждому действию, что отличает их от других клеток тела. Нейроны взаимодействуют с помощью короткой серии импульсов. Сообщение передается с помощью частотно-импульсной модуляции.