Смекни!
smekni.com

Временные ряды (стр. 2 из 3)

Развитие товарооборота требует увеличения количества предприятий торговли, общественного питания. При расчете количества на плановый период исходя из нормативов обеспеченности населения торговыми предприятиями для городской и сельской местности.

В качестве примера приведем содержание плана экономического и социального развития плодоовощного торгового предприятия. Он включает следующие разделы: исходные данные; основные экономические показатели работы предприятия; техническое и организационное развитие предприятия; план закладки продукции на длительное хранение; план реализации продукции; план розничного товарооборота; распределение издержек по завозу, хранению и оптовой реализации по группам товаров; издержки обращения розничной реализации продукции; затраты на производства продукции, ее переработку и реализацию; численность работников и фонд заработной планы; прибыль от оптовой реализации продукции; план прибыли от всех видов деятельности; распределение дохода; распределение прибыли; социальное развитие коллектива; финансовый план. Методика составления этого плана такая же, как и в других отраслях АПК.


3 Расчет прогноза экономического временного ряда

Имеются данные об экспорте железобетонной продукции товаров (в страны вне СНГ), млрд. долларов США.

Таблица 1

Экспорт товаров за 2002, 2003, 2004, 2005 годы (млрд.долларов США)

Экспорт товаров (в страны вне СНГ), млрд.долларов США Всего за год
2002 48,8
2003 61,0
2004 77,5
2005 103,5

Прежде, чем приступить к анализу, обратимся к графическому изображению исходных данных (рис. 1).

Рис. 1. Экспорт товаров

Как видно из построенного графика, четко прослеживается тенденция к увеличению объемов импорта. Проанализировав полученный график можно сделать вывод о нелинейном развитии процесса, предположив об экспоненциальном или параболическом развитии.

Теперь сделаем графический анализ квартальных данных за четыре года:

Таблица 2

Экспорт товаров за кварталы 2002,2003, 2004 и 2005 годов

Экспорт товаров (в страны вне СНГ), млрд.долларов США Кварталы
I II III IV
2002 9,8 11,8 12,6 14,6
2003 12,9 14,7 15,5 17,8
2004 16 18 19,8 23,7
2005 21 23,9 26,9 31,7

Рис. 2. Экспорт товаров

Как видно из графика яркое выражение имеет сезонность колебаний. Амплитуда колебания довольно не фиксированная, что указыает на наличие мультипликативной модели.

В исходных данных нам представлен интервальный ряд с равноотстоящими уровнями во времени. Поэтому для определения среднего уровня ряда воспользуемся следующей формулой:

млрд.долл.

Для количественной оценки динамики явлений применяются следующие основные аналитические показатели:

· абсолютный прирост;

· темпы роста;

· темпы прироста.

Рассчитаем каждый из этих показателей для интервального ряда с равноотстоящими уровнями во времени.

Представим статистические показатели динамики в виде таблицы 3.

Таблица 3

Статистические показатели динамики

t y t Абсолютный прирост, млрд.долларов США Темп роста, % Темп прироста, %
Цепной Базисный Цепной Базисный Цепной Базисный
1 48,8 - - - - - -
2 61,0 12,2 12,2 125 125 25 25
3 77,5 16,5 28,7 127,05 158,81 27,05 58,81
4 103,5 26 54,7 133,55 212,09 33,55 112,09

Темпы роста были примерно одинаковые. Это говорит о том, что для определения прогнозного значения можно использовать средний темп роста:

Проверим гипотезу о наличии тренда с помощью критерия Фостера-Стюарта. Для этого заполним вспомогательную таблицу 4:

Таблица 4

Вспомогательная таблица

t yt mt lt d t yt mt lt d
1 9,8 - - - 9 16,0 0 0 0
2 11,8 1 0 1 10 18,0 1 0 1
3 12,6 1 0 1 11 19,8 1 0 1
4 14,6 1 0 1 12 23,7 1 0 1
5 12,9 0 0 0 13 21,0 0 0 0
6 14,7 1 0 1 14 23,9 1 0 1
7 15,5 1 0 1 15 26,9 1 0 1
8 17,8 1 0 1 16 31,7 1 0 1

Применим критерий Стьюдента:

Тогда:

Получаем,

, то есть
, следовательно гипотеза Н0 отвергается, тренд есть.

Проанализируем структуру временного ряда с использованием коэффициента автокорреляции.

Найдем последовательно коэффициенты автокорреляции:

коэффициент автокорреляции первого порядка, так как сдвиг во времени

равен единице (
-лаг).

Аналогично находим остальные коэффициенты.

– коэффициент автокорреляции второго порядка.

– коэффициент автокорреляции третьего порядка.

– коэффициент автокорреляции четвертого порядка.

Таким образом, мы видим, что самым высоким является коэффициент автокорреляции четвертого порядка. Это говорит о том, что во временном ряде присутствуют сезонные колебания с периодичностью в четыре квартала.

Проверим значимость коэффициента автокорреляции. Для этого введем две гипотезы: Н0:

, Н1:
.

находится по таблице критических значений
отдельно для
>0 и
<0. Причем, если |
|>|
|, то принимается гипотеза Н1,то есть коэффициент значим. Если |
|<|
|, то принимается гипотеза Н0 и коэффициент автокорреляции незначим. В нашем случае коэффициент автокорреляции достаточно велик, и проверять его значимость необязательно.

Требуется провести сглаживание временного ряда и восстановить потерянные уровни.

Проведем сглаживание временного ряда с помощью простой скользящей средней. Результаты расчетов представим в виде следующей таблицы 13.

Таблица 5

Сглаживание исходного ряда с помощью скользящей средней

№ года № квартала t Импорт товаров, млрд.долларов США, yt Скользящая средняя,
1 I 1 9,8 - -
II 2 11,8 - -
III 3 12,6 12 , 59 1,001
IV 4 14,6 13,34 1,094
2 I 5 12,9 14,06 0,917
II 6 14,7 14,83 0,991
III 7 15,5 15,61 0,993
IV 8 17,8 16,41 1,085
3 I 9 16 17,36 0,922
II 10 18 18,64 0,966
III 11 19,8 20,0 0,990
IV 12 23,7 21,36 1,110
4 I 13 21 22,99 0,913
II 14 23,9 24,88 0,961
III 15 26,9 - -
IV 16 31,7 - -

Теперь рассчитаем отношение фактических значений к уровням сглаженного ряда. В результате получим временной ряд, уровни которого отражают влияние случайных факторов и сезонности.