Смекни!
smekni.com

Корреляционно - регрессионный анализ нефтедобывающей промышленности (стр. 3 из 6)

В данном вопросе нам необходимо получить общее систематизированное представление о приёмах анализа статических данных.

В статистике иногда применяют и другие подходы к разграничению приёмов анализа. Например, условно их подразделяют на две группы: традиционные (статистические) и математические.

С графическим методом связанно наглядное представление статистических данных. С его помощью можно показать основные динамики проявления исследуемых процессов во времени. Однако, четко детерминировать взаимосвязи между отдельно взятыми факторами и определяющими на их основе признаками, графическим методом не только достаточно сложно, но если рассматривать совокупность множества факторов, как это, например, выявляется в данной исследовательской работе, это под час даже не возможно. В связи с этим положением, для оценки взаимосвязи уровня рождаемости от определяющих его факторов можно воспользоваться эконометрическими методами математической статистики, а именно построением эконометрических моделей на основе корреляции, регрессии, дисперсионного и факторного анализа.

Следует оговорить, что эконометрические методы строятся на синтезе трех областей знаний: экономики, математики и статистики. Основа эконометрии – экономическая модель, под которой понимается схематическое представление экономического явления или процесса при помощи научной абстракции, отражения их характерных черт.

Теперь подробнее рассмотрим, что собой представляет каждый из приведенных видов анализа. Для этого вначале дадим определения каждого названного вида анализа статистических данных.

· Корреляционный анализ — метод обработки статистических данных, с помощью которого измеряется теснота связи между двумя или более переменными.

Ограничения корреляционного анализа

Сам по себе факт корреляционной зависимости не даёт основания утверждать, что одна из переменных предшествует или является причиной изменений, или то, что переменные вообще причинно связаны между собой, а не наблюдается действие третьего фактора.

· Регрессио́нный анализ (линейный) — статистический метод исследования зависимости между зависимой переменной Y и одной или несколькими независимыми переменными X 1,X 2,...,X p.

Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными.

Регрессионный анализ нельзя использовать для определения наличия связи между независимыми переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

· Дисперсионный анализ — метод в статистической математике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях.

· Факторный анализ — многомерный статистический метод, применяемый для изучения взаимосвязей между значениями переменных.

Факторный анализ позволяет решить две важные проблемы исследователя: описать объект измерения всесторонне и в то же время компактно. С помощью факторного анализа возможно выявление скрытых переменных факторов, отвечающих за наличие линейных статистических связей корреляций между наблюдаемыми переменными.

Таким образом, можно выделить 2 цели факторного анализа:

1. определение взаимосвязей между переменными, их классификация;

2. сокращение числа переменных.

Однако, в настоящее время широкое распространение получил, так называемый смешанный, корреляционно – регрессионный анализ. Он позволяет не только выявить влияние на критериальную (результирующую) переменную, в рамках регрессионного анализа, но и, в рамках корреляционного анализа, рассмотреть существует ли зависимость между определяющими переменными.

Также, перед тем как непосредственно приступить к описанию механизма построения эконометрических моделей в рамках регрессионного анализа, необходимо также ввести некоторые определения и понятия, с помощью которых можно будет дать характеристику полученных результатов.

В частности надо определить, какие могут существовать виды связи между зависимой переменной и независимой переменной. В зависимости от направления действия все виды связей могут быть прямые и обратные.

При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора, то есть с увеличением факторного признака увеличивается и результативный, и, наоборот, с уменьшением факторного признака уменьшается и результативный признак. В противном случае между рассматриваемыми величинами существуют обратные связи.

По аналитическому выражению (форме) связи могут быть прямолинейными и криволинейными. При прямолинейной связи с возрастанием значения факторного признака происходит непрерывное возрастание (или убывание) значений результативного признака. Математически такая связь представляется уравнением прямой, а графически – прямой линией. Отсюда ее более короткое название – линейная связь. При криволинейных связях с возрастанием значения факторного признака возрастание (или убывание) результативного признака происходит неравномерно, или же направление его изменения меняется на обратное. Геометрически такие связи представляются кривыми линиями (гиперболой, параболой и т.д.).

И что было отмечено ранее, по количеству факторов, действующих на результативный признак, связи различаются: однофакторные (один фактор) и многофакторные (два и более факторов). Однофакторные (простые) связи обычно называются парными (т.к. рассматривается пара признаков). В случае многофакторной (множественной) связи имеют в виду, что все факторы действуют комплексно, то есть одновременно и во взаимосвязи.

В ходе данного исследования из – за достаточно большого количества определенных влияющих на рождаемость факторов следует рассматривать множественную связь. Кроме того, исходя из предположения о том, что все факторы прямолинейно воздействуют на уровень нефтедобычи, то в рамках данной курсовой работы будут рассматриваться именно линейные эконометрические модели.

Теперь можно непосредственно приступить к описанию основных положений линейного регрессионного анализа многофакторных моделей.

Основными целями регрессионного анализа являются:

· Определение степени детерминированности вариации критериальной (зависимой) переменной предикатами (независимыми переменными);

· Предсказание значения зависимой переменной с помощью независимых;

· Определение вклада отдельных независимых переменных в вариацию зависимой.

На основе достижения данных целей в ходе работы мы сможем наиболее полно описать существующие взаимосвязи между рождаемостью и влияющими на нее факторами.

Множественный регрессионный анализ:

В общем случае в регрессионный анализ вовлекаются не одна, а несколько независимых переменных. Это наносит ущерб наглядности получаемых результатов, так как подобные множественные связи, в конечном счете, становится невозможно представить графически.

В случае множественного регрессионного анализа речь идёт о необходимости оценки коэффициентов уравнения:

где n — количество независимых переменных, обозначенных как х 1 и х n,

а — некоторая константа.

Как уже было сказано ранее, независимые переменные не должны коррелировать между собой.

Линейный множественный регрессионный анализ:

В ситуации, когда функция отзыва (цели) Y зависит не от одного, а от многих факторов, установление формы связи в таких случаях начинают, как правило с рассмотрения линейной регрессии такого вида:


В таком случае результаты наблюдений должны быть представлены уравнениями, полученными в каждом из п опытов:

(1)
или в виде матрицы результатов наблюдений:


где n – количество опытов;

k - количество факторов.

Для решения системы уравнений представленной выше необходимо, чтобы количество опытов было не меньше k + 1, т.е. п

k + 1.

Заданием множественного регрессионного анализа является построение такого уравнения прямой k-мерном пространстве, отклонение результатов наблюдений

от которой были бы минимальными. Используя для этого метод наименьших квадратов, получаем систему нормальных уравнений:


которую представим в матричной форме

( Х ТХ) В = X TY, (2)

где В - вектор-столбец коэффициентов уравнения регрессии;

X - матрица значений факторов;

Y - вектор-столбец функции отзыва;

X Т - транспонированная матрица X.

При

, они соответственно равны:


Перемножив правую и левую часть уравнения (2) на обратную матрицу ( Х ТХ) -1, получим при: