(Заметим, что условия C' ( y ) > 0, C'' ( y ) > 0 для этой функции выполнены.)
Рассмотрим возможные варианты поведения предприятия (фирмы) для двух случаев:
1. Предприятие имеет достаточно большой резерв производственных мощностей и не стремится к расширению производства, поэтому можно полагать, что C 2 = 0 и совокупные издержки являются линейной функцией объема выпуска:
Прибыль составит
Очевидно, что при малых объемах выпуска
фирма несет убытки, так как П < 0.
Здесь y w точка безубыточности (порог рентабельности), определяемая соотношением
Если y > y w , то фирма получает прибыль, и окончательное решение об объеме выпуска зависит от состояния рынка сбыта производимой продукции (см. рис. 8).
2. В более общем случае, когда С 2 0, имеются две точки безубыточности
На этом отрезке в точке
Следует заметить, что окончательное решение фирмы также зависит от состояния рынка, но с точки зрения соблюдения экономических интересов ей следует рекомендовать оптимизирующее значение выпуска (рис. 9).
Рис. 9. Оптимальный объем выпуска
По определению прибылью считается величина
Точки безубыточности
Таким образом, оптимальный объем производства характеризуется тем, что в этом состоянии маргинальный валовой доход (R(y)) в точности равен маргинальным издержкам C ( y ).
В самом деле, если y <
| ( |
Рис. 10. Точка максимума прибыли и зона безубыточности
Нетрудно видеть, что при увеличении цены (р) оптимальный выпуск, а также прибыль увеличиваются, т.е.
Это верно также и в общем случае, так как
Пример. Фирма производит сельскохозяйственные машины в количестве у штук, причем объем производства в принципе может изменяться от 50 до 220 штук в месяц. При этом естественно увеличение объема производства потребует увеличения затрат как пропорциональных, так и сверхпропорциональных (нелинейных), поскольку потребуется приобрести новое оборудование и расширить производственные площади.
В конкретном примере будем исходить из того, что общие издержки (себестоимость) на производство продукции в количестве у изделий выражаются формулой
C ( y ) = 1000 + 20 y + 0,1 y 2 (тыс. руб.).
Это означает, что постоянные издержки
C 0 = 1000 (т. руб.),
пропорциональные затраты
C 1 = 20 y ,
т.е. обобщенный показатель этих затрат в расчете на одно изделие равен: а = 20 тыс. руб., а нелинейные затраты составят C 2 = 0,1 y 2 ( b = 0,1).
Приведенная выше формула для издержек является частным случаем общей формулы, где показатель h = 2.
Для нахождения оптимального объема производства воспользуемся формулой точки максимума прибыли (*), согласно которой имеем:
Совершенно очевидно, что объем производства, при котором достигается максимальная прибыль, весьма существенно определяется рыночной ценой изделия p .
В табл. 1 представлены результаты расчета оптимальных объемов при различных значениях цены от 40 до 60 тыс. рублей за изделие.
В первом столбце таблицы фигурируют возможные объемы выпуска у , второй столбец содержит данные о полных издержках С (у), в третьем столбце представлена себестоимость в расчете на одно изделие:
Таблица 1
Данные об объемах выпуска, затратах и прибыли
Объемы и затраты | Цены и прибыли | ||||||||
Y | C | AC | MC | 40 | 42 | 44 | 50 | 54 | 60 |
50 | 2250 | 45 | 30 | - 250 | - 150 | - 50 | 250 | 450 | 740 |
33 | |||||||||
80 | 3240 | 40,5 | 36 | -40 | +120 | 280 | 760 | 1080 | 1560 |
38 | |||||||||
100 | 4000 | 40 | 40 | 0 | 200 | 400 | 1000 | 1400 | 2000 |
41 | |||||||||
110 | 4410 | 40,1 | 42 | - 10 | 210 | 430 | 1090 | 1530 | 2190 |
43 | |||||||||
120 | 4840 | 40,3 | 44 | - 40 | 200 | 440 | 1160 | 1640 | 2360 |
47 | |||||||||
Продолжение таблицы 1 | |||||||||
150 | 6250 | 41,7 | 50 | - 250 | 50 | 350 | 1250 | 1850 | 2750 |
52 | |||||||||
170 | 7290 | 42,9 | 54 | - 490 | - 150 | 190 | 1210 | 1890 | 2910 |
57 | |||||||||
200 | 9000 | 45 | 60 | - 1000 | - 600 | - 200 | 1000 | 1800 | 3000 |
62 | |||||||||
220 | 10240 | 46,5 | 64 | - 1440 | - 1000 | - 560 | 760 | 1640 | 2960 |
Четвертый столбец характеризует значения указанных выше маргинальных издержек МС , которые показывают, во сколько обходится производство одного дополнительного изделия в данной ситуации. Нетрудно заметить, что маргинальные издержки возрастают по мере роста производства, что хорошо согласуется с положением, высказанным в начале этого параграфа. При рассмотрении таблицы следует обратить внимание на то, что оптимальные объемы находятся точно на пересечении строки (маргинальные издержки МС) и столбца (цена p) с равными их значениями, что совершенно аккуратно соотносится с правилом оптимальности, установленным выше.
Проведенный выше анализ относится к обстановке совершенной конкуренции, когда производитель не может повлиять своими действиями на систему цен, и поэтому цена p на товар y выступает в модели производителя как экзогенная величина.
В случае же несовершенной конкуренции производитель может оказывать непосредственное влияние на цену. В особенности это относится к монопольному производителю товара, который формирует цену из соображения разумной рентабельности.
Рассмотрим фирму с линейной функцией издержек, которая определяет цену таким образом, чтобы прибыль составляла определенный процент (долю 0 < g < 1) от валового дохода, т.е.
Отсюда имеем
Валовой доход
и производство оказывается безубыточным, начиная с самых малых объемов производства ( y w 0). Легко видеть, что цена зависит от объема, т.е. p = p (y), и при увеличении объема производства (у) цена товара уменьшается, т.е. p'(y) < 0. Это положение имеет место для монополиста и в общем случае.
Требование максимизации прибыли для монополиста имеет вид
Предполагая по-прежнему, что