Смекни!
smekni.com

Производственная функция фирмы (стр. 6 из 9)

(Заметим, что условия C' ( y ) > 0, C'' ( y ) > 0 для этой функции выполнены.)

Рассмотрим возможные варианты поведения предприятия (фирмы) для двух случаев:

1. Предприятие имеет достаточно большой резерв производственных мощностей и не стремится к расширению производства, поэтому можно полагать, что C 2 = 0 и совокупные издержки являются линейной функцией объема выпуска:

Прибыль составит

Очевидно, что при малых объемах выпуска

фирма несет убытки, так как П < 0.

Здесь y w точка безубыточности (порог рентабельности), определяемая соотношением

Если y > y w , то фирма получает прибыль, и окончательное решение об объеме выпуска зависит от состояния рынка сбыта производимой продукции (см. рис. 8).

2. В более общем случае, когда С 2 0, имеются две точки безубыточности

и
причем положительную прибыль фирма получит, если объем выпуска y удовлетворяет условию

На этом отрезке в точке

достигается наибольшее значение прибыли. Таким образом, существует оптимальное решение задачи о максимизации прибыли. В точке А , соответствующей издержкам при оптимальном выпуске, касательная к кривой издержек С параллельна прямой линии дохода R .

Следует заметить, что окончательное решение фирмы также зависит от состояния рынка, но с точки зрения соблюдения экономических интересов ей следует рекомендовать оптимизирующее значение выпуска (рис. 9).

Рис. 9. Оптимальный объем выпуска

По определению прибылью считается величина

Точки безубыточности

и
определяются из условия равенства прибыли нулю, а максимальное ее значение достигается в точке
которая удовлетворяет уравнению

или

Таким образом, оптимальный объем производства характеризуется тем, что в этом состоянии маргинальный валовой доход (R(y)) в точности равен маргинальным издержкам C ( y ).

В самом деле, если y <

,то R (y) > C (y), и тогда следует увеличить выпуск продукции, поскольку ожидаемый дополнительный доход превысит ожидаемые дополнительные издержки. Если же y >
, то R (y) < C (y), и всякое увеличение объема уменьшит прибыль, поэтому естественно рекомендовать уменьшить объем производства и придти в состояние y =
(рис. 10).

(

Рис. 10. Точка максимума прибыли и зона безубыточности

Нетрудно видеть, что при увеличении цены (р) оптимальный выпуск, а также прибыль увеличиваются, т.е.

Это верно также и в общем случае, так как

Пример. Фирма производит сельскохозяйственные машины в количестве у штук, причем объем производства в принципе может изменяться от 50 до 220 штук в месяц. При этом естественно увеличение объема производства потребует увеличения затрат как пропорциональных, так и сверхпропорциональных (нелинейных), поскольку потребуется приобрести новое оборудование и расширить производственные площади.

В конкретном примере будем исходить из того, что общие издержки (себестоимость) на производство продукции в количестве у изделий выражаются формулой

C ( y ) = 1000 + 20 y + 0,1 y 2 (тыс. руб.).

Это означает, что постоянные издержки

C 0 = 1000 (т. руб.),

пропорциональные затраты

C 1 = 20 y ,

т.е. обобщенный показатель этих затрат в расчете на одно изделие равен: а = 20 тыс. руб., а нелинейные затраты составят C 2 = 0,1 y 2 ( b = 0,1).

Приведенная выше формула для издержек является частным случаем общей формулы, где показатель h = 2.

Для нахождения оптимального объема производства воспользуемся формулой точки максимума прибыли (*), согласно которой имеем:

Совершенно очевидно, что объем производства, при котором достигается максимальная прибыль, весьма существенно определяется рыночной ценой изделия p .

В табл. 1 представлены результаты расчета оптимальных объемов при различных значениях цены от 40 до 60 тыс. рублей за изделие.

В первом столбце таблицы фигурируют возможные объемы выпуска у , второй столбец содержит данные о полных издержках С (у), в третьем столбце представлена себестоимость в расчете на одно изделие:

Таблица 1

Данные об объемах выпуска, затратах и прибыли

Объемы и затраты Цены и прибыли
Y C AC MC 40 42 44 50 54 60
50 2250 45 30 - 250 - 150 - 50 250 450 740
33
80 3240 40,5 36 -40 +120 280 760 1080 1560
38
100 4000 40 40 0 200 400 1000 1400 2000
41
110 4410 40,1 42 - 10 210 430 1090 1530 2190
43
120 4840 40,3 44 - 40 200 440 1160 1640 2360
47
Продолжение таблицы 1
150 6250 41,7 50 - 250 50 350 1250 1850 2750
52
170 7290 42,9 54 - 490 - 150 190 1210 1890 2910
57
200 9000 45 60 - 1000 - 600 - 200 1000 1800 3000
62
220 10240 46,5 64 - 1440 - 1000 - 560 760 1640 2960

Четвертый столбец характеризует значения указанных выше маргинальных издержек МС , которые показывают, во сколько обходится производство одного дополнительного изделия в данной ситуации. Нетрудно заметить, что маргинальные издержки возрастают по мере роста производства, что хорошо согласуется с положением, высказанным в начале этого параграфа. При рассмотрении таблицы следует обратить внимание на то, что оптимальные объемы находятся точно на пересечении строки (маргинальные издержки МС) и столбца (цена p) с равными их значениями, что совершенно аккуратно соотносится с правилом оптимальности, установленным выше.

Проведенный выше анализ относится к обстановке совершенной конкуренции, когда производитель не может повлиять своими действиями на систему цен, и поэтому цена p на товар y выступает в модели производителя как экзогенная величина.

В случае же несовершенной конкуренции производитель может оказывать непосредственное влияние на цену. В особенности это относится к монопольному производителю товара, который формирует цену из соображения разумной рентабельности.

Рассмотрим фирму с линейной функцией издержек, которая определяет цену таким образом, чтобы прибыль составляла определенный процент (долю 0 < g < 1) от валового дохода, т.е.

Отсюда имеем

Валовой доход

и производство оказывается безубыточным, начиная с самых малых объемов производства ( y w 0). Легко видеть, что цена зависит от объема, т.е. p = p (y), и при увеличении объема производства (у) цена товара уменьшается, т.е. p'(y) < 0. Это положение имеет место для монополиста и в общем случае.

Требование максимизации прибыли для монополиста имеет вид

Предполагая по-прежнему, что

>0,
имеем уравнение для нахождения оптимального выпуска (
):