Кроме силовых трансформаторов, на электростанциях устанавливаются понижающие трансформаторы для питания собственных нужд (ТСН), а также измерительные трансформаторы тока (ТТ) и напряжения (ТН), которые служат для питания контрольно-измерительных приборов и схем релейной защиты и автоматики. Эти трансформаторы снижают напряжение, отделяют цепи высокого и низкого напряжения, что обеспечивает их безопасное обслуживание.
Соединение аппаратов в электрической установке станции между собой осуществляется неизолированными проводами и шинами, изолированными проводами и кабелями. В распределительных устройствах электростанций благодаря простоте монтажа, высокой экономичности и надежности наибольшее распространение получили жесткие и гибкие шины. В установках генераторного напряжения в зависимости от расчетного тока нагрузки применяют жесткие одно-, двух- и трехполосные алюминиевые шины. В открытых распределительных устройствах применяют гибкие шины, выполненные из алюминиевых или сталеалюминиевых проводов. Для крепления шин и изоляции их от заземленных частей применяются опорные, проходные и подвесные изоляторы, выполненные из электроизоляционного фарфора или специальных полимеров. Изоляторы для наружной установки имеют развитую ребристую поверхность, благодаря чему сохраняется необходимая электрическая прочность при атмосферных осадках,
Для соединения отдельных элементов на электростанциях широко используют трех- и четырехжильные кабели. Кабели имеют токоведущие жилы (одно- или многопроволочные) из меди или алюминия, изолированные бумажными лентами, резиной или поли-винилхлоридной оболочкой. Кабели, как правило, имеют общую поясную изоляцию, оболочку или бронирование стальной лентой.
В электроустановках напряжением свыше 1000 В цепи присоединяются к сборным шинам через разъединители и выключатели высокого напряжения. Выключатели служат для включения и отключения электрических цепей высокого напряжения под нагрузкой, а также для их отключения в аварийных режимах, например, при коротких замыканиях. Они должны за минимальное время отключить цепь при коротких замыканиях, чтобы не допустить развития аварии. Поэтому основной характеристикой выключателя является его отключающая способность, т. е. наибольший ток, который он способен надежно отключить. По конструкции и способу гашения электрической дуги различают воздушные, масляные боковые, маломасляные, вакуумные и элегазовые выключатели. В сетях 6-10 кВ наибольшее распространение получили маломасляные и вакуумные, а в сетях свыше 10 кВ - элегазовые выключатели. Контактная система каждой фазы выключателя вместе с гасительной камерой, как правило, помещается в бак цилиндрической формы с трансформаторным маслом или в специальную камеру, которая заполняется газовой смесью или в ней создается вакуум. Здесь масло, вакуум или газ служат для гашения электрической дуги за 0,015-0,025 с, что гарантирует сохранность оборудования и ЛЭП при возникновении аварийных ситуаций. Отключение выключателя происходит под действием релейной защиты с помощью специального механизма. Достоинствами этих выключателей являются небольшой вес и размеры, надежность и удобство эксплуатации.
Кроме выключателей в цепях высокого напряжения устанавливаются разъединители, которые предназначены для отключения и включения цепей при отсутствии в них тока. По конструкции разъединители напоминают рубильники и в отключенном состоянии создают видимый разрыв цепи тока, обеспечивая тем самым безопасность проведения ремонтных работ в электроустановках свыше 1000 В. На отходящих линиях электропередачи, кроме шинных, устанавливаются и линейные разъединители, отключение которых не позволяет подать напряжение к месту работы по линии электропередачи. Для защиты линий электропередачи собственных нужд электростанций предназначены предохранители. Основным элементом предохранителя является плавкая вставка, включаемая в рассечку с защищаемой цепью, сгорание которой при перегрузке или коротком замыкании приводит к отключению поврежденного элемента. Для облегчения гашения дуги плавкая вставка выполняется из ряда параллельных проволок малого сечения или тонких медных пластин, помещенных в фарфоровый корпус и засыпанных кварцевым песком.
Бесперебойное снабжение потребителей может быть обеспечено только при правильно выбранной схеме электростанции. Основными требованиями, предъявляемыми к схемам, являются надежность работы установок, гибкость схемы, удобство оперативных переключений и вывода в ремонт оборудования, что обеспечивает экономичность и надежность работы электростанций.
Расчет и выбор основного оборудования ТЭС
Представление о рабочем процессе и оборудовании, используемом на ТЭС, дают принципиальные технологические схемы. В зависимости от назначения, существующих нагрузок, количества вырабатываемой энергии, вида и параметров теплоносителя производится расчет тепловой схемы и выбор основного и вспомогательного оборудования электростанции. Тепловые схемы станций разрабатываются в нескольких вариантах, окончательный выбор производится на основании технико-экономических расчетов.
При проектировании и сопоставлении тепловых схем необходимо исходить из следующих положений. Одной из главных характеристик, определяющих выбор оборудования, является коэффициент теплофикации, отражающий степень использования регулируемых отборов турбин.
Любая ТЭЦ и целесообразность ее сооружения определяются, прежде всего, количеством произведенной электроэнергии по теплофикационному циклу. Соотношение объемов электроэнергии, вырабатываемой по теплофикационному и конденсационному циклам, определяет величину основных технико-экономических показателей эксплуатации ТЭЦ. Поэтому для выбора турбин используется метод энергетических характеристик. Для этого необходимо и достаточно знать обобщенные энергетические характеристики турбин. Расчеты, выполняемые с использованием этих характеристик, дают достаточную степень точности для проектных и технико-экономических расчетов.
Наиболее экономичными для покрытия тепловых нагрузок является использование турбин с противодавлением, обеспечивающих 100%-ю выработку электроэнергии по теплофикационному циклу с наименьшим расходом топлива (Ьэ = 170 г у.т./кВт-ч). Однако в чистом виде такую схему можно реализовать только при наличии стабильной круглогодовой нагрузки. Так, для городских ТЭЦ выбор турбин с противодавлением производится исходя из летней средней часовой нагрузки горячего водоснабжения.
Технико-экономические показатели работы ТЭС
При проектировании систем энергоснабжения необходимо технико-экономическое сопоставление вариантов. Расчет технико-экономических показателей ТЭС выполняется в определенной последовательности.
Стоимость единицы установленной мощности определяется на основании сметно-финансовых расчетов. Предварительно капитальные вложения могут быть определены по укрупненным показателям сметной стоимости строительства ТЭС. Эксплуатационные расходы определяются по соответствующим сметам затрат на производство электро- и теплоэнергии.
2. Система теплоснабжения
Необходимость создания систем теплоснабжения обусловлена следующими основными причинами:
• суровыми климатическими условиями основных районов
страны, когда в течение 200-360 дней в году необходимо отопление
жилых, общественных и производственных зданий;
• невозможностью осуществления многих технологических
процессов без затрат теплоты, например, производство электроэнергии, варка и сушка материалов, стирка белья и др.;
• необходимостью удовлетворения санитарно-гигиенических
нужд населения в горячей воде для мытья посуды, уборки помещений и других процессов.
В настоящее время удельный вес городов в теплопотреблении страны составляет примерно 70%. Структура теплового баланса в городах достаточно стабильна и выглядит следующим образом: доля затрат теплоты в системах отопления и вентиляции составляет 55-60%, технологическое потребление тепла - 35-40%, бытовое горячее водоснабжение - 5-20% от общего объема потребления теплоты. Расход топлива на теплоснабжение превосходит его потребление на электроснабжение и составляет около 30% общего потребления топливно-энергетических ресурсов в стране.
Для удовлетворения потребностей города в теплоте создаются специальные системы теплоснабжения, представляющие собой комплекс инженерных сооружений, специального оборудования и коммуникаций для генерирования, транспорта и потребления теплоты. В системах теплоснабжения выделяют три основных элемента:
• источники теплоты или теплогенерирующие установки, с
помощью которых топливно-энергетические ресурсы преобразуются в теплоту;
• теплопроводы или тепловые сети в виде системы труб и каналов, предназначенных для транспорта и распределения теплоносителя между потребителями;
комплекс инженерного оборудования и коммуникаций для
эффективного использования теплоты потребителями.
Системы теплоснабжения классифицируются по источникам теплоты, мощности, потребителям, теплоносителю, способам и схемам присоединения, количеству трубопроводов и другим признакам.