Смекни!
smekni.com

Основные направления работы в городском хозяйстве (стр. 3 из 8)

Кроме силовых трансформаторов, на электростанциях уста­навливаются понижающие трансформаторы для питания собствен­ных нужд (ТСН), а также измерительные трансформаторы тока (ТТ) и напряжения (ТН), которые служат для питания контрольно-измерительных приборов и схем релейной защиты и автоматики. Эти трансформаторы снижают напряжение, отделяют цепи высоко­го и низкого напряжения, что обеспечивает их безопасное обслу­живание.

Соединение аппаратов в электрической установке станции между собой осуществляется неизолированными проводами и ши­нами, изолированными проводами и кабелями. В распределитель­ных устройствах электростанций благодаря простоте монтажа, вы­сокой экономичности и надежности наибольшее распространение получили жесткие и гибкие шины. В установках генераторного на­пряжения в зависимости от расчетного тока нагрузки применяют жесткие одно-, двух- и трехполосные алюминиевые шины. В от­крытых распределительных устройствах применяют гибкие шины, выполненные из алюминиевых или сталеалюминиевых проводов. Для крепления шин и изоляции их от заземленных частей приме­няются опорные, проходные и подвесные изоляторы, выполненные из электроизоляционного фарфора или специальных полимеров. Изоляторы для наружной установки имеют развитую ребристую поверхность, благодаря чему сохраняется необходимая электриче­ская прочность при атмосферных осадках,

Для соединения отдельных элементов на электростанциях ши­роко используют трех- и четырехжильные кабели. Кабели имеют токоведущие жилы (одно- или многопроволочные) из меди или алюминия, изолированные бумажными лентами, резиной или поли-винилхлоридной оболочкой. Кабели, как правило, имеют общую поясную изоляцию, оболочку или бронирование стальной лентой.

В электроустановках напряжением свыше 1000 В цепи при­соединяются к сборным шинам через разъединители и выключате­ли высокого напряжения. Выключатели служат для включения и отключения электрических цепей высокого напряжения под на­грузкой, а также для их отключения в аварийных режимах, напри­мер, при коротких замыканиях. Они должны за минимальное время отключить цепь при коротких замыканиях, чтобы не допустить раз­вития аварии. Поэтому основной характеристикой выключателя яв­ляется его отключающая способность, т. е. наибольший ток, кото­рый он способен надежно отключить. По конструкции и способу гашения электрической дуги различают воздушные, масляные бо­ковые, маломасляные, вакуумные и элегазовые выключатели. В се­тях 6-10 кВ наибольшее распространение получили маломасляные и вакуумные, а в сетях свыше 10 кВ - элегазовые выключатели. Контактная система каждой фазы выключателя вместе с гаситель­ной камерой, как правило, помещается в бак цилиндрической фор­мы с трансформаторным маслом или в специальную камеру, кото­рая заполняется газовой смесью или в ней создается вакуум. Здесь масло, вакуум или газ служат для гашения электрической дуги за 0,015-0,025 с, что гарантирует сохранность оборудования и ЛЭП при возникновении аварийных ситуаций. Отключение выключателя происходит под действием релейной защиты с помощью специаль­ного механизма. Достоинствами этих выключателей являются не­большой вес и размеры, надежность и удобство эксплуатации.

Кроме выключателей в цепях высокого напряжения устанав­ливаются разъединители, которые предназначены для отключения и включения цепей при отсутствии в них тока. По конструкции разъединители напоминают рубильники и в отключенном состоя­нии создают видимый разрыв цепи тока, обеспечивая тем самым безопасность проведения ремонтных работ в электроустановках свыше 1000 В. На отходящих линиях электропередачи, кроме шин­ных, устанавливаются и линейные разъединители, отключение кото­рых не позволяет подать напряжение к месту работы по линии элек­тропередачи. Для защиты линий электропередачи собственных нужд электростанций предназначены предохранители. Основным элемен­том предохранителя является плавкая вставка, включаемая в рассечку с защищаемой цепью, сгорание которой при перегрузке или коротком замыкании приводит к отключению поврежденного элемента. Для облегчения гашения дуги плавкая вставка выполняется из ряда па­раллельных проволок малого сечения или тонких медных пластин, помещенных в фарфоровый корпус и засыпанных кварцевым песком.

Бесперебойное снабжение потребителей может быть обеспе­чено только при правильно выбранной схеме электростанции. Ос­новными требованиями, предъявляемыми к схемам, являются на­дежность работы установок, гибкость схемы, удобство оператив­ных переключений и вывода в ремонт оборудования, что обеспечи­вает экономичность и надежность работы электростанций.

Расчет и выбор основного оборудования ТЭС

Представление о рабочем процессе и оборудовании, исполь­зуемом на ТЭС, дают принципиальные технологические схемы. В зависимости от назначения, существующих нагрузок, количества вырабатываемой энергии, вида и параметров теплоносителя произ­водится расчет тепловой схемы и выбор основного и вспомогатель­ного оборудования электростанции. Тепловые схемы станций раз­рабатываются в нескольких вариантах, окончательный выбор про­изводится на основании технико-экономических расчетов.

При проектировании и сопоставлении тепловых схем необхо­димо исходить из следующих положений. Одной из главных харак­теристик, определяющих выбор оборудования, является коэффици­ент теплофикации, отражающий степень использования регулируе­мых отборов турбин.

Любая ТЭЦ и целесообразность ее сооружения определяются, прежде всего, количеством произведенной электро­энергии по теплофикационному циклу. Соотношение объемов электроэнергии, вырабатываемой по теплофикационному и конден­сационному циклам, определяет величину основных технико-экономических показателей эксплуатации ТЭЦ. Поэтому для выбо­ра турбин используется метод энергетических характеристик. Для этого необходимо и достаточно знать обобщенные энергетические характеристики турбин. Расчеты, выполняемые с использованием этих характеристик, дают достаточную степень точности для про­ектных и технико-экономических расчетов.

Наиболее экономичными для покрытия тепловых нагрузок яв­ляется использование турбин с противодавлением, обеспечиваю­щих 100%-ю выработку электроэнергии по теплофикационному циклу с наименьшим расходом топлива (Ьэ = 170 г у.т./кВт-ч). Од­нако в чистом виде такую схему можно реализовать только при на­личии стабильной круглогодовой нагрузки. Так, для городских ТЭЦ выбор турбин с противодавлением производится исходя из летней средней часовой нагрузки горячего водоснабжения.

Технико-экономические показатели работы ТЭС

При проектировании систем энергоснабжения необходимо технико-экономическое сопоставление вариантов. Расчет технико-экономических показателей ТЭС выполняется в определенной после­довательности.

Стоимость единицы установленной мощности определяется на основании сметно-финансовых расчетов. Предварительно капи­тальные вложения могут быть определены по укрупненным показа­телям сметной стоимости строительства ТЭС. Эксплуатационные расходы определяются по соответствующим сметам затрат на про­изводство электро- и теплоэнергии.

2. Система теплоснабжения

Необходимость создания систем теплоснабжения обусловлена следующими основными причинами:

• суровыми климатическими условиями основных районов
страны, когда в течение 200-360 дней в году необходимо отопление
жилых, общественных и производственных зданий;

• невозможностью осуществления многих технологических
процессов без затрат теплоты, например, производство электроэнергии, варка и сушка материалов, стирка белья и др.;

• необходимостью удовлетворения санитарно-гигиенических
нужд населения в горячей воде для мытья посуды, уборки помещений и других процессов.

В настоящее время удельный вес городов в теплопотреблении страны составляет примерно 70%. Структура теплового баланса в городах достаточно стабильна и выглядит следующим образом: до­ля затрат теплоты в системах отопления и вентиляции составляет 55-60%, технологическое потребление тепла - 35-40%, бытовое горячее водоснабжение - 5-20% от общего объема потребления те­плоты. Расход топлива на теплоснабжение превосходит его потреб­ление на электроснабжение и составляет около 30% общего потребления топливно-энергетических ресурсов в стране.

Для удовлетворения потребностей города в теплоте создаются специальные системы теплоснабжения, представляющие собой ком­плекс инженерных сооружений, специального оборудования и ком­муникаций для генерирования, транспорта и потребления теплоты. В системах теплоснабжения выделяют три основных элемента:

• источники теплоты или теплогенерирующие установки, с
помощью которых топливно-энергетические ресурсы преобразуются в теплоту;

• теплопроводы или тепловые сети в виде системы труб и каналов, предназначенных для транспорта и распределения теплоносителя между потребителями;

комплекс инженерного оборудования и коммуникаций для
эффективного использования теплоты потребителями.

Системы теплоснабжения классифицируются по источникам теплоты, мощности, потребителям, теплоносителю, способам и схемам присоединения, количеству трубопроводов и другим при­знакам.