Смекни!
smekni.com

Расчет и анализ статистических показателей (стр. 6 из 11)

Рассчитаем асимметрию для численности работников.

=0,63

Существенность асимметрии:

Рассчитаем этот показатель для объема продаж и сравним его с коэффициентом асимметрии.

Асимметрия равна 1,7,

>0, это говорит о том, что асимметрия правосторонняя (первый признак).

Теперь рассчитаем данный показатель для численности работников и сравним его с коэффициентом асимметрии.

,

Имеет место асимметрия, равная 0, т. е ряд абсолютно симметричен.

б) Для оценки крутизны данного распределения в сравнении с нормальным вычисляется эксцесс распределения. Эксцесс рассчитывается по формуле:

где

- эксцесс;

- центральный момент четвертого порядка;

- среднее квадратическое отклонение для сгруппированных данных.

Центральный момент четвертого порядка:

где

- центральный момент четвертого порядка;

- центральный вариант i-го интервала;

- средняя арифметическая взвешенная;

- частота i-й группы.

Рассчитаем центральный момент четвертого порядка и эксцесс для объема продаж.

= - 0,82

Эксцесс отрицателен, следовательно, эмпирическая кривая распределения низковершинна по сравнению с нормальным распределением.

Рассчитаем центральный момент четвертого порядка и эксцесс для численности работников.

= - 1,07

Эксцесс отрицателен, значит крутизна распределения меньше нормального.

в) Определим существенность эксцесса. Распределение можно считать нормальным, если показатель эксцесса не превышает своего двукратного среднего квадратического отклонения, которое вычисляется по формуле:

Определим существенность эксцесса для объема продаж.

Определим существенность эксцесса для стажа по специальности.

г) Критерий Пирсона рассчитывается по формуле:


где

- критерий согласия Пирсона;

- эмпирические частоты;

- теоретические частоты.

Критерий Романовского:

где

- критерий Романовского;

- критерий Пирсона;

- количество групп.

Критерий Колмогорова:

где

- критерий Колмогорова;

- максимальная разность между накопленными теоретическими и эмпирическими частотами;

- численность совокупности.

Рассчитаем данные критерии для объема продаж.

Критерий Пирсона.

При вероятности Р = 0,95 и числе степеней свободы К = 2 расчетное значение меньше теоретического, следовательно гипотеза о близости эмпирического распределения к нормальному не опровергается.

Критерий Романовского

Значение критерия Романовского меньше 3, значит, распределение является нормальным. Расхождения между эмпирическими и теоретическими частотами можно считать случайными.

Критерий Колмогорова.

Р (λ) =1

Таким образом, с вероятностью, равной 1, можно утверждать, что отклонения эмпирических частот от теоретических случайны.

Рассчитаем данные критерии для численности работников

Критерий Пирсона.

Расчетное значение критерия Пирсона меньше теоретического значит, распределение соответствует нормальному.

Критерий Романовского.


Значение критерия Романовского меньше 3, значит, распределение является нормальным. Расхождения между эмпирическими и теоретическими частотами можно считать случайными. Критерий Колмогорова.

Р (λ) =1

Таким образом, с вероятностью, равной 1, можно утверждать, что отклонения эмпирических частот от теоретических случайны, следовательно, можно считать, что в основе эмпирического распределения совокупности по уровню предприятий по коэффициенту сменности лежит закон нормального распределения.

1.9 Произвести аналитическую группировку по двум признакам, построив аналитическую таблицу

При построении аналитической таблицы независимый (факторный) признак расположить в строках таблицы, а зависимый перегруппировать во взаимосвязи с факторным. Провести корреляционно-регрессионный анализ:

а) построить поле корреляции;

б) рассчитать коэффициенты регрессии, эластичности. Сделать оценку уравнения регрессии, рассчитав среднюю квадратическую ошибку уравнения регрессии. Оценить значимость линии регрессии, выражающей связь между двумя признаками, сравнив среднюю квадратическую ошибку уравнения регрессии со средним квадратическим отклонением, рассчитанным по зависимому признаку;

в) рассчитать линейный коэффициент корреляции;

г) эмпирическое корреляционное отношение;

д) теоретическое корреляционное отношение;

е) коэффициент корреляции рангов Спирмэна;

ж) коэффициент ранговой корреляции Кендалла;

з) коэффициент Фехнера;

и) произвести оценку достоверности коэффициента корреляции по критерию Фишера (Приложение Д).

Для исследования зависимости между явлениями используют аналитическую группировку. При их построении можно установить взаимосвязь между двумя признаками и более. При этом факторными будут называться признаки, под воздействием которых изменяются результативные признаки. Представим аналитическую группировку в таблице 9.1.


Таблица 9.1 Аналитическая группировка

Объем продаж Численность работников Итого:
420-429 429-438 438-447 447-456 456-465 465-473
5100-5210 2 2
5210-5320 1 5 6
5320-5430 2 2 2 6
5430-5560 2 2 2 2 8
5560-5670 2 1 1 1 5
Итого: 3 5 6 5 5 3 27

а) Корреляционную зависимость для наглядности можно изобразить графически. Для этого, имея n взаимосвязанных пар значений x и y, пользуясь прямоугольной системой координат, каждую такую пару изображают в виде точки на плоскости с координатами x и y. А затем на фоне "корреляционного поля" строится средняя линия. Представим поле корреляции на рисунке 9.1.