Найдут ЛСЭ применение и в лазерной хирургии и в фоторадиационной медицине. Небольшой размер пятна и возможность перестройки частоты означают, что в хирургии можно получить оптимальный эффект для конкретной облучаемой ткани в зависимости от длины волны при воздействии излучения ЛСЭ. В фоторадиационной медицине введенные предварительно в ткани красители активируются на определенных длинах волн. При активации красители выделяют свободный кислород и убивают клетку без хирургического вмешательства. Красители могут присоединяться к антителам, которые под действием лазерного света высвобождаются в определенных местах. Использование перестраиваемых лазеров позволит применять для этих целей различные типы красителей. Маломощные ЛСЭ можно устанавливать непосредственно в больницах.
Ускорители, используемые в физике высоких энергий, чрезвычайно громоздки, и в настоящее время ведутся исследования, направленные на получение более высоких ускоряющих полей, которые позволят сократить размеры ускорителей и увеличить энергию частиц. Известно, что сфокусированные высокоинтенсивные лазерные поля могут создавать поперечные электрические поля напряженностью порядка 109 В/см; это можно было бы использовать в ускорителе на ЛСЭ, чтобы ускорить поток позитронов или электронов, пролетающих в ондуляторе. Увеличение энергии частиц может быть достигнуто за счет последовательного изменения периода ондуляторного поля. Изменение начального периода ондулятора от 10 см до нескольких метров позволит на длине в несколько километров получить энергию электронов более 100 ГэВ. Трудность здесь состоит в том, чтобы поддержать интенсивный лазерный пучок сфокусированным на таком большом расстоянии; Пеллегрини предложил для решения данной проблемы использовать оптические волноводы. Если реализация этого предложения будет успешной, то ЛСЭ вернет свой долг физике ускорителей.