Смекни!
smekni.com

Моделирование рисковых ситуации в экономике и бизнесе (стр. 7 из 29)

третья стратегия игрока 2 мажорируется смешанной стратегией из первой и второй его чистых стратегий, взятых с частотами 0,5 и 0,5:

10*0,5 + 0*0,5 = 5 < 6;

0*0,5 + 10*0,5 = 5 < 7.

Таким образом, исходная матрица игры эквивалентна матри­це следующего вида:

Как видно, возможности мажорирования смешанными стра­тегиями в отличие от чистых значительно менее прозрачны (нуж­но должным образом подобрать частоты применения чистых стратегий), но такие возможности есть, и ими полезно уметь пользоваться.

Задачи для самостоятельного решения

Задача 2.2. Найдите седловые точки следующих платежных мат­риц:

Задача 2.3. Найдите

для платежной матрицы:

Задача 2.4. Решите аналитически и графически, используя поня­тие доминирования, игры, определяемые следующими платежными матрицами:

Задача 2.5. Постройте платежную матрицу двухпальцевой игры Морра, которая заключается в следующем. В игру играют два челове­ка: каждый из них показывает один или два пальца и одновременно называет число пальцев, которое, по его мнению, покажет его против­ник (естественно, противник этого не видит). Если один из игроков угадывает правильно, он выигрывает сумму, равную сумме пальцев, показанных им и его противником. В противном случае - ничья (вы­игрыш равен нулю).

Найдите нижнюю и верхнюю цены игры.

Задача 2.6. Используя понятие доминирования, уменьшите разме­ры следующей платежной матрицы:

Для задач 2.7-2.12 постройте платежную матрицу игры и сформу­лируйте соответствующую модель линейного программирования.

Задача 2.7. Пусть сторона А засылает подводную лодку в один из п районов. Сторона В, располагая т противолодочными кораблями, желает обнаружить лодку противника. Вероятность обнаружения лодки в j-м районе (j = 1,...,п) равна pj. Предполагается, что обнаружение под­лодки каждым кораблем является независимым событием. Сторона В может посылать в различные регионы разное количество кораблей (рас­пределение т кораблей по регионам и есть стратегии стороны В). Сто­рона В стремится максимизировать вероятность обнаружения подлод­ки. Сторона А желает противоположного.

Вероятность обнаружения лодки в районе j, в котором находится rij кораблей (i - номер стратегии), равна:

причем

. Найдите оптимальное распределение противолодоч­ных кораблей по регионам.

Рассмотреть частный случай: m = 2, п = 2, р1 = 0,6, р2 = 0,4.

Задача 2.8. Каждому из игроков выдается по бубновому и трефо­вому тузу. Игрок 1 получает также бубновую двойку, а игрок 2 - тре­фовую. При первом ходе игрок 1 выбирает и откладывает одну из своих карт, а игрок 2, не зная карты, выбранной игроком 1, также откладыва­ет одну из своих карт. Если были отложены карты одной масти, то выигрывает игрок 1, в противном случае выигравшим считается игрок 2. Если отложены две двойки, выигрыш равен нулю. Размер выигрыша определяется картой, отложенной победителем (тузу приписывается одно очко, двойке - два).

Задача 2.9. Фирма изготавливает железобетонные панели, исполь­зуя в качестве основного сырья цемент. В связи с неопределенным спросом на изделия потребность в сырье в течение месяца также не определена. Цемент поставляется в мешках, причем известно, что по­требность может составлять D1,D2,...,Dn мешков. Резервы сырья на складе могут составлять R1,R2,...,Rnмешков в месяц. Учитывая, что удельные затраты на хранение сырья равны с1 а удельные издержки дефицитности сырья (потери, связанные с отсутствием необходимого количества цемента на складе) равны с2, определить оптимальную стра­тегию управления запасами цемента на складе.

Рассмотреть частный случаи: п = 5, c1 = 5, c2 = 3;

D = (1 500, 2 000, 2 500, 3 500, 4 000), R =(1 500, 2 000, 2 500, 3 500, 4 000).

Задача 2.10. Игрок 2 прячет некоторый ценный предмет в одном из п мест, а игрок 1 этот предмет ищет. Если он его находит, то получает сумму аi где i = 1,2, ..., п, в противном случае - не получает ничего.

Задача 2.11. Два игрока независимо друг от друга называют по одному числу из диапазона 1 - 5. Если сумма чисел нечетная, то иг­рок 2 платит игроку 1 сумму, равную максимальному из чисел; если четная, то платит игрок 1.

Задача 2.12. Два игрока имеют по п рублей и предмет ценой с > 0. Каждый игрок делает заявку в запечатанном конверте, предлагая i руб. (где i - одно из целых чисел от 0 до п) за предмет. Записавший большее число получает предмет и платит другому предложенную им сумму. Если оба игрока заявляют одинаковую сумму, то предмет назначается без компенсирующего одностороннего платежа одному из игроков путем бросания монеты, так что ожидаемая доля каждого в предмете состав­ляет в этом случае половину с. Постройте платежную матрицу игры и определите, имеет ли игра седловую точку.

Глава 3 ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ И РИСКА (ИГРЫ С ПРИРОДОЙ)

3.1. ПОНЯТИЕ ИГРЫ С ПРИРОДОЙ

Ситуации, описываемые рассмотренными в гл. 2 моделями в виде стратегических игр, в экономической практике могут не в полной мере оказаться адекватными действительности, посколь­ку реализация модели предполагает многократность повторения действий (решений), предпринимаемых в похожих условиях. В реальности количество принимаемых экономических решений в неизменных условиях жестко ограничено. Нередко экономичес­кая ситуация является уникальной, и решение в условиях нео­пределенности должно приниматься однократно. Это порождает необходимость развития методов моделирования принятия реше­ний в условиях неопределенности и риска.

Традиционно следующим этапом такого развития являются игры с природой. Формально изучение игр с природой, так же как и стратегических, должно начинаться с построения платежной мат­рицы, что является, по существу, наиболее трудоемким этапом под­готовки принятия решения. Ошибки в платежной матрице не могут быть компенсированы никакими вычислительными методами и приведут к неверному итоговому результату.

Отличительная особенность игры с природой состоит в том, что в ней сознательно действует только один из участников, в большинстве случаев называемый игроком 1. Игрок 2 (природа) сознательно против игрока 1 не действует, а выступает как не имеющий конкретной цели и случайным образом выбирающий очередные «ходы» партнер по игре. Поэтому термин «природа» характеризует некую объективную действительность, которую не следует понимать буквально, хотя вполне могут встретиться ситуации, в которых «игроком» 2 действительно может быть природа (например, обстоятельства, связанные с погодными ус­ловиями или с природными стихийными силами).

На примере игры с природой рассмотрим проблему заготов­ки угля на зиму.

Задача 3.1. Необходимо закупить уголь для обогрева дома. Количество хранимого угля ограничено и в течение холодного периода должно быть полностью израсходовано. Предполагает­ся, что неизрасходованный зимой уголь в лето пропадает. Поку­пать уголь можно в любое время, однако летом он дешевле, чем зимой. Неопределенность состоит в том, что не известно, какой будет зима: суровой, тогда придется докупать уголь, или мягкой, тогда часть угля может остаться неиспользованной. Очевидно, что у природы нет злого умысла и она ничего против человека «не имеет». С другой стороны, долгосрочные прогнозы, состав­ляемые метеорологическими службами, неточны и поэтому мо­гут использоваться в практической деятельности только как ори­ентировочные при принятии решений.

Решение. Матрица игры с природой аналогична матрице стратегической игры: А = ||аij||, где аij - выигрыш игрока 1 при реализации его чистой стратегии i и чистой стратегии j игрока 2 (i = 1, ..., m; j = 1, ..., п).

Мажорирование стратегий (см. разд. 2.4) в игре с природой имеет определенную специфику: исключать из рассмотрения можно лишь доминируемые стратегии игрока 1: если для всех j=1, ..., п

, k, l = 1, ..., т, то k-ю стратегию принимающего решения игрока 1 можно не рассматривать и вычеркнуть из мат­рицы игры. Столбцы, отвечающие стратегиям природы, вычер­кивать из матрицы игры (исключать из рассмотрения) недопус­тимо, поскольку природа не стремится к выигрышу в «игре» с человеком, для нее нет целенаправленно выигрышных или про­игрышных стратегий, она действует неосознанно*.

* Впрочем, в матричных представлениях игр с природой значения выигры­шей принимающего решения игрока не всегда располагаются по строкам. Это допустимо делать и по столбцам, принимая ЛПР как игрока 2, понимая, одна­ко, что мажорировать можно только стратегии принимающего решения игрока. Такой подход осуществлен в некоторых задачах, представленных в гл. 6 - 8 настоящего учебного пособия.

На первый взгляд отсутствие обдуманного противодействия упрощает игроку задачу выбора решения. Однако, хотя ЛПР никто не мешает, ему труднее обосновать свой выбор, поскольку в этом случае гарантированный результат не известен.