Смекни!
smekni.com

Моделирование рисковых ситуации в экономике и бизнесе (стр. 6 из 29)

2.3. РЕШЕНИЕ ЗАДАЧ В СМЕШАННЫХ СТРАТЕГИЯХ (ЧАСТНЫЙ СЛУЧАЙ)

Решить игру - означает найти цену игры и оптимальные стратегии. Рассмотрение методов нахождения оптимальных сме­шанных стратегий для матричных игр начнем с простейшей игры, описываемой матрицей 2х2. Игры с седловой точкой специально рассматриваться не будут. Если получена седловая точка, то это означает, что имеются невыгодные стратегии, от которых следу­ет отказываться. При отсутствии седловой точки можно полу­чить две оптимальные смешанные стратегии. Как уже отмеча­лось, эти смешанные стратегии записываются так:

Значит, имеется платежная матрица

При этом

откуда получаем оптимальные значения

и

:

Зная

и

находим g:

Вычислив g, находим

и

:

Задача решена, так как найдены векторы

и цена игры g. Имея матрицу платежей А, можно решить задачу графически. При этом методе алгоритм решения весьма прост (рис. 2.1):

1. По оси абсцисс откладывается отрезок единичной длины.

2. По оси ординат откладываются выигрыши при стратегии А1.

3. На линии, параллельной оси ординат, в точке 1 отклады­ваются выигрыши при стратегии А2.

4. Концы отрезков обозначаются для a11b11, a12 – b21, a22b22, a21 – b12 и проводятся две прямые линии b11 b12и b21 b22.

5. Определяется ордината точки пересечения с. Она равна g. Абсцисса точки с равна р21 = 1 – р2).

Рис. 2.1. Оптимальная смешанная стратегия

Данный метод имеет достаточно широкую область приложе­ния. Это основано на общем свойстве игр т´п, состоящем в том, что в любой игре т´п каждый игрок имеет оптимальную сме­шанную стратегию, в которой число чистых стратегий не боль­ше, чем min(m,n). Из этого свойства можно получить известное следствие: в любой игре 2´п и т´2 каждая оптимальная страте­гия

и
содержит не более двух активных стратегий. Значит, любая игра 2´n и т´2 может быть сведена к игре 2´2. Следовательно, игры 2´т и т´2 можно решить графическим методом.

Если матрица конечной игры имеет размерность т´п, где т>2 и п>2, то для определения оптимальных смешанных стратегий, как будет показано в приложении, используется линейное програм­мирование.

Рассмотрим некоторые практические задачи, в которых ис­пользуются критерии игр для оценки наиболее эффективного поведения оперирующей стороны.

Задача 2.1. Выбрать оптимальный режим работы новой систе­мы ЭВМ, состоящей из двух ЭВМ типов А1 и А2. Известны выигрыши от внедрения каждого типа ЭВМ в зависимости от внешних условий, если сравнить со старой системой.

При использовании ЭВМ .типов А1 и А2 в зависимости от характера решаемых задач В1 и В2 (долговременные и краткос­рочные) будет разный эффект. Предполагается, что максималь­ный выигрыш соответствует наибольшему значению критерия эффекта от замены вычислительной техники старого поколения на ЭВМ А1 и А2.

Итак, дана матрица игры (табл. 2.4), где А1, А2 - стратегии руководителя; В1, В2 - стратегии, отражающие характер решае­мых на ЭВМ задач.

Таблица 2.4

Требуется найти оптимальную смешанную стратегию руково­дителя и гарантированный средний результат g, т.е. определить, какую долю времени должны использоваться ЭВМ типов А1 и А2.

Решение. Запишем условия в принятых индексах:

а11 = 0,3; а12 = 0,8; а21 = 0,7; а22 = 0,4 .

Определим нижнюю и верхнюю цены игры:

a1 = 0,3; a2 = 0,4; a = 0,4;

b1 = 0,7; b2 = 0,8; b = 0,7.

Получаем игру без седловой точки, так как

Максиминная стратегия руководителя вычислительного цен­тра – А2.

Для этой стратегии гарантированный выигрыш равен a = 0,4 (40 %) по сравнению со старой системой.

Решение для определения g, р1 и р2 проведем графически (рис. 2.2).

Рис. 2.2. Графическая интерпретация алгоритма решения

Алгоритм решения:

1. По оси абсцисс отложим отрезок единичной длины.

2. По оси ординат отложим выигрыши при стратегии А1.

3. На вертикали в точке 1 отложим выигрыши при стратегии А2.

4. Проводим прямую b11 b12, соединяющую точки а11,a21.

5. Проводим прямую b21b22, соединяющую точки а12, а22.

6. Определяем ординату точки пересечения с линий b11b12 и b21b22. Она равна g.

7. Определим абсциссу точки пересечения с. Она равна р2, а р1=1–р2

Выпишем решение и представим оптимальную стратегию игры:

Вывод. При установке новой системы ЭВМ, если неизвес­тны условия решения задач заказчика, на работу ЭВМ А1 долж­но приходиться 37,5 % времени, а на работу ЭВМ А2 - 62,5 %. При этом выигрыш составит 55 % по сравнению с предыдущей системой ЭВМ.

2.4. МАЖОРИРОВАНИЕ (ДОМИНИРОВАНИЕ) СТРАТЕГИЙ

Мажорирование представляет отношение между стратегия­ми, наличие которого во многих практических случаях дает воз­можность сократить размеры исходной платежной матрицы игры. Рассмотрим это понятие на примере матрицы

Рассуждая с позиции игрока 2, можно обнаружить преиму­щество его третьей стратегии перед второй, поскольку при пер­вой стратегии игрока 1 выигрыш игрока 2 равен —3 (вторая стратегия) и 1 (третья стратегия), а при второй стратегии игрока 1 выигрыш игрока 2 равен —2 (вторая стратегия) и - 0,5 (третья стратегия). Таким образом, при любой стратегии игрока 1 игроку 2 выгоднее применять свою третью стратегию по сравнению со второй; при наличии третьей стратегии игрок 2, если он стремится играть оптимально, никогда не будет использовать свою вторую стратегию, поэтому ее мож­но исключить из игры, т.е. в исходной платежной матрице можно вычеркнуть 2-й столбец:

С позиции игрока 1 его первая стратегия оказывается хуже второй, так как по первой стратегии он только проигрывает. Поэтому первую стратегию можно исключить, а матрицу игры преобразовать к виду:

(0 0,5).

Учитывая интересы игрока 2, следует оставить только его первую стратегию, поскольку, выбирая вторую стратегию, иг­рок 2 оказывается в проигрыше (0,5 - выигрыш игрока 1), и матрица игры принимает простейший вид: (0), т.е. имеется седловая точка.

Мажорирование можно распространить и на смешанные стра­тегии. Если элементы одной строки не все меньше (или равны) соответствующих элементов других строк, но все меньше (или равны) некоторых выпуклых линейных комбинаций соответству­ющих элементов других строк, то эту стратегию можно исклю­чить, заменив ее смешанной стратегией с соответствующими частотами использования чистых стратегий.

В качестве иллюстрации к сказанному рассмотрим матрицу игры:

Для первых двух чистых стратегий игрока 1 возьмем частоты их применения (вероятности) равными 0,25 и 0,75.

Третья стратегия игрока 1 мажорируется линейной выпуклой комбинацией первой и второй чистых стратегий, взятых с часто­тами 0,25 и 0,75 соответственно, т.е. смешанной стратегией:

24*0,25 + 0*0,75 = 6 > 4;

0*0,25 + 8*0,75 = 6 > 5.

Поэтому третью стратегию игрока 1 можно исключить, ис­пользуя вместо нее указанную выше смешанную стратегию.

Аналогично если каждый элемент некоторого столбца боль­ше или равен некоторой выпуклой линейной комбинации соот­ветствующих элементов некоторых других столбцов, то этот столбец можно исключить из рассмотрения (вычеркнуть из мат­рицы). Например, для матрицы