Смекни!
smekni.com

Моделирование рисковых ситуации в экономике и бизнесе (стр. 5 из 29)

Таким образом,

, т.е.

Значит,

– чистая цена игры при стратегиях А2 и B1. Следовательно, имеем игру с седловой точкой.

Пример 2.2. Определим максиминную и минимаксную стра­тегии при заданной матрице эффективности (табл. 2.3).

Решение. Определим максиминную стратегию:

;
;

Максиминная стратегия - строка А2.

Таблица 2.3

Определим минимаксную стратегию:

Минимаксная стратегия - столбец В2. Здесь

, следова­тельно, седловой точки нет.

Если матрица игры содержит элемент, минимальный в сво­ей строке и максимальный в своем столбце, то он, как уже сказано выше, является седловой точкой. В этом случае мы имеем игру с седловой точкой.

Пусть в игре с седловой точкой один игрок придерживается седловой точки, тогда другой получит лучший результат, если также будет придерживаться этой точки. Лучшее поведение иг­рока не должно повлечь уменьшение его выигрыша. Зато худшее поведение может привести к этому. В данном случае решением игры являются:

• чистая стратегия игрока 1;

• чистая стратегия игрока 2;

• седловой элемент.

Оптимальные чистые стратегии — это чистые стратегии, об­разующие седловую точку.

В игре без седловой точки, если игрок 1 информирован о стратегии, принятой игроком 2, он сможет принять оптималь­ную стратегию, которая не совпадает с максиминной.

Пример 2.3. Дана матрица игры

Допустим, игроку 1 стало известно, что игрок 2 принял минимаксную стратегию. Игрок 1 должен выбрать оптимальную стратегию при условии, что B2 стратегия игрока 2 (

= 5).

Решение. Определим максиминную стратегию игрока 1:

Стратегия игрока 1 – А2 - максиминная.

Выберем оптимальную стратегию для игрока 1. Ею будет не максиминная А2, дающая игроку 1 выигрыш

= 4, а та страте­гия, которая соответствует
. В этом случае его максималь­ный гарантированный выигрыш будет равен верхней цене игры
, поэтому он выберет свою оптимальную стратегию А1, зная, что игрок 2 выбрал свою стратегию В2. Таким образом, рас­смотренный пример дает результат, отличный от результата при игре с седловой точкой.

Стратегия является оптимальной, если ее применение обес­печит игроку наибольший гарантированный выигрыш при лю­бых возможных стратегиях другого игрока.

На примере 2.3 показано, что бывают ситуации, когда игрок 1 может получить выигрыш, превосходящий максиминный, если ему известны намерения игрока 2.

При многократном повторении игры в сходных условиях можно добиться гарантированного среднего выигрыша, превос­ходящего для игрока 1 максиминный.

2.2. СМЕШАННЫЕ СТРАТЕГИИ

Если в матричной игре отсутствует седловая точка в чистых стратегиях, то находят верхнюю и нижнюю цены игры. Они показывают, что игрок 1 не получит выигрыша, превосходящего верхнюю цену игры, и что игроку 1 гарантирован выигрыш, не меньший нижней цены игры. В примере 2.3 игрок 1 получил по своей оптимальной стратегии А1, отличной от максиминной, выигрыш, равный верхней цене игры. Такова плата за информи­рованность о стратегии игрока 2. Это крайний случай. Не улуч­шится ли результат игрока 1, если информация о действиях противной стороны будет отсутствовать, но игрок будет много­кратно применять чистые стратегии случайным образом с опре­деленной вероятностью?

В такой ситуации, оказывается, можно получать выигрыши, в среднем большие нижней цены игры, но меньшие верхней.

Смешанная стратегия игрока - это полный набор примене­ния его чистых стратегий при многократном повторении игры в одних и тех же условиях с заданными вероятностями. Подведем итоги сказанного и перечислим условия применения смешанных стратегий:

• игра без седловой точки;

• игроки используют случайную смесь чистых стратегий с заданными вероятностями;

• игра многократно повторяется в сходных условиях;

• при каждом из ходов ни один игрок не информирован о выборе стратегии другим игроком;

• допускается осреднение результатов игр.

Применяются следующие обозначения смешанных стратегий.

Для игрока 1 смешанная стратегия, заключающаяся в применении чистых стратегий А1, А2,..., Аm с соответствующими вероятностями р1, р2, ..., рm,

где

,

Для игрока 2

где

,

qj вероятность применения чистой стратегии Вj.

В случае, когда pi= 1 , для игрока 1 имеем чистую стратегию:

Чистые стратегии игрока являются единственно возможны­ми несовместными событиями. В матричной игре, зная матрицу А (она относится и к игроку 1, и к игроку 2), можно определить при заданных векторах

и
средний выигрыш (математическое ожидание эффекта) игрока 1:

,

где

и
- векторы;

рi и qj - компоненты векторов.

Путем применения своих смешанных стратегий игрок 1 стре­мится максимально увеличить свой средний выигрыш, а игрок 2 - довести этот эффект до минимально возможного значения. Игрок 1 стремится достигнуть

.

Игрок 2 добивается того, чтобы выполнялось условие

.

Обозначим

и
векторы, соответствующие оптимальным смешанным стратегиям игроков 1 и 2, т.е. такие векторы
и
, при которых будет выполнено равенство

Цена игры g – средний выигрыш игрока 1 при использовании обоими игроками смешанных стратегий. Следовательно, реше­нием матричной игры являются:

1)

- оптимальная смешанная стратегия игрока 1;

2)

- оптимальная смешанная стратегия игрока 2;

3) g - цена игры.

Смешанные стратегии будут оптимальными (

и
), если они образуют седловую точку для функции
, т.е.

Существует основная теорема математических игр (доказа­тельство см. в приложении).

Теорема 2.1. Для матричной игры с любой матрицей A вели­чины

И

существуют и равны между собой:

.

Следует отметить, что при выборе оптимальных стратегий игроку 1 всегда будет гарантирован средний выигрыш, не мень­ший, чем цена игры, при любой фиксированной стратегии игро­ка 2 (и, наоборот, для игрока 2). Активными стратегиями игро­ков 1 и 2 называют стратегии, входящие в состав оптимальных смешанных стратегий соответствующих игроков с вероятностя­ми, отличными от нуля. Значит, в состав оптимальных смешан­ных стратегий игроков могут входить не все априори заданные их стратегии.