Смекни!
smekni.com

Моделирование рисковых ситуации в экономике и бизнесе (стр. 28 из 29)

КРАТКИЙ СЛОВАРЬ ТЕРМИНОВ

Вероятность случайного события - основная категория в тео­рии вероятностей - положительное число, заключенное меж­ду нулем и единицей: 0 < Р(А) < 1, где Р - обозначение ве­роятности, А - случайное событие.

Дискретные и непрерывные случайные величины - основ­ные числовые показатели в теории вероятностей. Дискретная случайная величина может принимать конечное или беско­нечное счетное множество значений. Возможные значения не­прерывной случайной величины занимают некоторый интер­вал числовой оси (конечный или бесконечный).

Дисперсия - числовая характеристика степени разброса значе­ний случайной величины. Дисперсия постоянной величины равна нулю. Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат: D(CX) = C2D(X), где D - знак дисперсии; С — постоянная величина.

Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин: D(X + Y) = D (X) + D(Y).

Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме дисперсий этих величин. Сумма посто­янной и случайной величин равна дисперсии случайной ве­личины. Дисперсия разности двух независимых величин рав­на сумме их дисперсий.

Достоверное событие - событие, в котором каждый элементар­ный исход испытания благоприятствует событию. Вероят­ность достоверного события равна 1.

Закон распределения случайной величины - соотношение, устанавливающее связь между возможными значениями слу­чайной величины и соответствующими им вероятностями. Простейшей формой задания закона распределения дискрет­ной случайной величины Х является таблица, в которой пе­речислены возможные значения случайной величины и со­ответствующие им вероятности (ряд распределения). Для не­прерывной случайной величины нельзя построить ряд распределения, так как она содержит бесконечное множество возможных значений, которые сплошь заполняют некоторый промежуток. Эти значения нельзя перечислить в какой-либо таблице. Каждое отдельное значение непрерывной случай­ной величины не обладает никакой отличной от нуля веро­ятностью.

Линейное программирование - раздел прикладной математи­ки, изучающий задачу отыскания минимума (максимума) ли­нейной функции многих переменных при линейных ограни­чениях в виде равенств или неравенств. Общую задачу ли­нейного программирования формулируют так:

найти минимум функции п переменных

при ограничениях:

Задача максимизации линейной функции сводится к задаче ее минимизации заменой знаков всех коэффициентов сj на противоположные.

Математическое ожидание - числовая характеристика случай­ной величины, определяющая ее среднее значение. Свойства: математическое ожидание постоянной величины равно самой постоянной; постоянный множитель можно выносить за знак математического ожидания; математическое ожидание произ­ведения двух независимых случайных величин равно произ­ведению их математических ожиданий: M(ХY) = M(X)M(Y); математическое ожидание суммы (разности) двух случай­ных величин равно сумме математических ожиданий сла­гаемых: М(Х+ Y) = М(Х) + M(Y), где М - знак математи­ческого ожидания; М(Х) - математическое ожидание слу­чайной величины X.

Невозможное событие - событие, которое не может произойти в результате испытания. Вероятность невозможного события равна 0.

Независимое событие - событие В не зависит от А, если появ­ление события А не изменяет вероятность события В, т.е. условная вероятность события В равна его безусловной веро­ятности: РA(В) = Р(В). Если событие В не зависит от собы­тия А, то и событие А не зависит от события В. Это означает, что свойство независимости событий взаимно.

Попарно-независимые события - несколько событий, каждые два из которых независимы. Пусть А, В, С попарно независи­мы, тогда независимы А и В, А и С, В и С. Вероятность со­вместного появления нескольких событий, независимых в со­вокупности (АВС), равна произведению вероятностей этих событий: Р(АВС) = Р(А)Р(В)Р(С).

Практически достоверное событие - событие, вероятность которого не в точности равна единице, но очень близка к ней: Р(А) » 1.

Практически невозможное событие - событие, вероятность которого не в точности равна нулю, но очень близка к нему: Р(А) » 0.

Например, если парашют не раскрывается с вероятностью 0,01, - это недопустимо, а если поезд дальнего следования опоздает на 0,01 мин, можно считать, что поезд пришел вов­ремя.

Предмет теории вероятностей - изучение вероятностных зако­номерностей массовых однородных случайных событий.

Противоположное событие — событие А (не А), состоящее в непоявлении события А.

Теорема умножения вероятностей - инструмент для вычисле­ния вероятности совместного события: Р(АВ) = Р(А)РA(В), где Р(АВ) — вероятность совместного события; Р(А) - вероят­ность появления события А; РA(В) - вероятность появления события В при условии, что событие А уже наступило. Веро­ятность совместного появления нескольких событий равна произведению вероятностей одного из них на условные веро­ятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились. В частности, для трех событий: Р(АВС) = Р(А)РA(В) РAB(С). Порядок, в котором рас­положены события, может быть любым.

Теорема умножения независимых событий - частный случай теоремы умножения вероятностей. Вероятность совместного наступления независимых событий А и В равна произведе­нию вероятностей этих событий: Р(АВ) = Р(А)Р(В).

Функция распределения (или интегральный закон распределе­ния) - функция F(x), определяющая для каждого значения х вероятность того, что случайная величина Х примет значе­ние, меньшее х, т.е. F(x) = Р(Х < х). Эта функция распреде­ления существует как для дискретных, так и для непрерыв­ных случайных величин.

ЛИТЕРАТУРА

1. Вальд А. Последовательный анализ: Пер. с англ. - М.: Физмат-гиз, 1960.

2. Вентцель Е. С., Овчаров А. А. Теория вероятностей и ее инже­нерные приложения. - М.: Наука, 1988.

3. Гольштейн Е. Г., ЮдинД. Б. Новые направления в линейном про­граммировании. - М.: Сов. радио, 1966.

4. Дубров А. М. Последовательный анализ в статистической обра­ботке информации. - М.: Статистика, 1976.

5. Дубров А. М. Математико-статистическая оценка эффективности в экономических задачах. - М.: Финансы и статистика, 1982.

6. Дубров А. М. Статистические методы в инвестиционной дея­тельности // Рубин Ю. Б., Солдаткин В. И., Петраков Н. Я. Общая редакция. Инвестиционно-финансовый портфель. - М.: Совинтэк, 1993. - С. 163-176.

7. Замков О. О., Толстопятенко А. В., Черемных Ю. Н. Математи­ческие методы в экономике. - М.: ДИС, 1997. - С. 245-267.

8. Клейнер Г. Б. Риски промышленных предприятий // Российский экономический журнал. - 1994. - № 5-6. - С. 85-92.

9. Клейнер Г. Б., Тамбовцев В. Л., Качалов Р. М. Предприятие в нестабильной экономической среде: риски, стратегии, безопасность. -М.: Экономика, 1997.

10. Комарова Н. В., Гаврилова Л. В. Фирма: стратегия и тактика управления рисками // Вестник Санкт-Петербургского университета. Сер. 5. Экономика. - 1993. - Вып. 2 (12). - С. 92-95.

11. Лагоша Б. А. Об оценке эффективности инвестиционных про­ектов //Тез. докл. научной конференции «Организационные науки и про­блемы государственного регулирования рыночной экономики». - М.:

ЦЭМИ РАН, Международная академия организационных наук, 1996. -С. 75-77.

12. Мак Кинси Дж. Введение в теорию игр: Пер. с англ. - М.: Физматгиз, 1960.

13. Нейман Дж., Моргенштерн О. Теория игр и экономическое поведение: Пер. с англ. - М.: Наука, 1970.

14. Основные методические положения оптимизации развития и размещения производства / Под. ред. академиков А. Г. Аганбегяна и Н. П. Федоренко. - М.: Наука, 1978.

15. Ожегов С. И. Словарь русского языка. - М.: Русский язык, 1981.

16. Первозванский А. А., Первозванская Т.Н. Финансовый рынок: расчет и риск. - М.: Инфра-М, 1992.

17. Самуэльсон П. Экономика. Т. 1. - М.: МГП «Алгон», ВНИИСИ, 1992.

18. Соколинская Н. Э. Экономический риск в деятельности коммер­ческого банка. (Методы оценки и практика регулирования). - М.: Об­щество «Знание» РСФСР, 1991.

19. Уилкс С. Математическая статистика. - М.: Наука, 1967.

20. Хозяйственный риск и методы его измерения: Пер. с венг. / Т. Бочкаи, Д. Месена, Д. Мико, Е. Сеп, Э. Хусти. — М.: Экономика, 1979.

21. Gren J. Ocena jacosej wyrobow obiektow ze wzgledn na wielle wymagan. - Warszawa, 1970.

22. Gren J. Statystyczne i ich Zastosowania. Panstwowe Wydawnictwo Ekonomiczne. - Warszawa, 1972.

23. Dantzig G. B. A proof of the equivalence of the programming and the game problem. Activity Analysis of Production and Allocation, ed. By Koopmans T. C., Cowles Commission Monograph, № 13, New York, Wiley, 1951. -P.330-335.

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Безразличие к риску 73, 74

Безусловный денежный" эквива­лент (БДЭ) 50, 67

Величина страхования оптималь­ная 78, 80

Вероятность 13, 15, 25, 33, 57, 62, 65, 72, 81, 101, 112, 117, 157

Дерево решений 47, 48, 53

Дисперсия 13, 58

Задача линейного программиро­вания 19, 30, 36, 86, 90,158, 162

Игра антагонистическая 18, 108, 113

одношаговая 19

многошаговая 19

с природой 20, 38, 45, 64

с седловой точкой 22, 24, 26, 33, 37

статистическая 20, 108, 110, 111, 114, 123, 129, 136, 149, 153

стратегическая 16, 20, 38, 42, 113, 114, 123, 129, 153

Инвестиции 86, 88, 92, 99, 104

Индекс риска 86

Комбинация стратегий линейная выпуклая 33, 34

Коэффициент дисконтирования 93, 94, 97, 99, 103, 106