Смекни!
smekni.com

Моделирование рисковых ситуации в экономике и бизнесе (стр. 25 из 29)

Вывод. С помощью нерандомизированной байесовской фун­кции получаем решение при одноступенчатом статистическом плане приемки партии изделий, если известно распределение доли дефектных изделий в партии, т.е. априорное распределение со­стояний природы.

Пример 8.1. Производитель продает торговой фирме боль­шую (п = 100) партию изделий. По договору представитель тор­говой фирмы отбирает случайным образом п = 30 изделий. Кон­троль проводится по согласованной программе при одноступен­чатом плане. Стоимость проверки одного изделия C1 = 180 руб., стоимость исправного изделия С2 = 2 000 руб.

Требуется найти критическое число k при предположении, что доля дефектных изделий W подчинена бета-распределению.

Предполагаем, что доля бракованных изделий при отлажен­ном производстве близка к нулю, поэтому g(W) будет иметь большое значение. Пусть аргументы бета-функции B(p,q) равны: p=1, q=5.

Нужно построить график распределения и определить мини­мальное число k. (Функция на графике при росте доли дефект­ных изделий будет быстро стремиться к нулю.)

Решение. Определим B(p,q):

Используя значения доли W (пусть W = 0; 0,05; 0,1; 0,2; ...,0,9;1), получаем:

Составим таблицу распределения g{W) при значении аргумен­тов бета-функции: q = 5, р = 1 (табл. 8.9).

Таблица 8.9

Найдем критическое число k при п = 30, которое должно удовлетворять двойному неравенству:

Подставив численные значения параметров в эти неравенства, получаем k:

0,09*36 - 1 - 1 £ k £ 0,09*36 - 1.

1,24 £ k £ 2,24.

Следовательно, k = 2 .

Вывод. Критическое число равно 2, статистический план запишется (2|30).

Партия будет принята при числе бракованных в выборке из 30 изделий, не превышающем 2 шт. В противном случае партия будет забракована.

Пример 8.2. Для условий примера 8.1 при плане (2|30) под­считать функцию потерь при: k = 3; k = 2 и возможном отказе в принятой партии двух изделий из числа непроверенных (N-n), если N = 100; k = 2 и возможном возврате изделий из числа непроверенных, если W= 0,05.

Решение. Определим функцию потерь при k = 3, полагая согласно рис. 8.1, что р = 1:

Рис. 8.1. Бета-распределение при р = 1,q=5

Найдем функцию потерь при k = 2, когда партия была при­нята, но затем в торговой фирме было обнаружено 2 неисправ­ных изделия из числа непроверенных при сдаче:

L(W, a1) = 180n +2C2+2C2 = 180*30 + 4*2 000 = 5 400 + 8 000 = 13400 руб.

Вычислим функцию потерь при k = 2 и возможных отказах при W =0,05:

L(W, а1) = 180n + 2C2 + C2(N - n) = 5 400 + 4 000 + 70*0,050C2 = 9400 + 3,5*2000 = 16400 руб.

Поскольку 3,5 отказа невозможны (могут быть 3 или 4), до­бавляем (отнимаем) половину стоимости изделия и получаем:

L(W, a1) = (16400 ± 1000) руб.

Пример 8.3. Оставим условия примера 8.1, но изменим объем выборки. Вместо п = 30 примем п = 45. Требуется определить критическое число k, если оно удовлетворяет двойному неравен­ству при нерандомизированной байесовской функции решения r(x, d)=f(k):

(p+q+n) – p – 1 £ k £
(p+q+n) – p.

Решение. Запишем в принятых выше обозначениях усло­вия: С1 = 180 руб.; С2 = 2 000 руб.; р = 1; q = 5, п = 45:

(p+q+n)=1+5+45=51;

=
=0,09.

Вычислим минимальное значение k:

0,09*51 - 1 - 1 £ k £ 0,09*51 - 1;

2,59 £ k £ 3,59.

Таким образом, k = 3.

Вывод. Партия будет принята при k == 1, 2 или 3, а при k = 4 или более партия изделии будет забракована, 4 бракованных изделия будут заменены в выборке на годные, остальные 55 из 100 изделий будут проверены.

Пример 8.4. Оценить возможности сбоев производства из-за нарушения кооперированных поставок.

С помощью методов математического программирования можно составить оптимальный план производства. Однако этот план при нерегулярности кооперированных поставок смежников может быть фактически не реализован.

В данной ситуации возможно вычислить вероятность регу­лярности кооперированных поставок, что должно соответство­вать вероятности отсутствия сбоев производства.

Введем обозначения:

Q (состояние природы) - вероятность отсутствия сбоев про­изводства Q Î W = [0,1];

А = [0,1] - область решения статистика;

а - оценка вероятности Q.

Примем в виде квадратичной функцию потерь L(Q, a)= (Q - а)2. Оценим вероятность Q по информации за предыдущий месяц. Пусть W и N - события, заключающиеся в том, что в предыду­щем месяце были соответственно выполнены и не выполнены кооперированные поставки. Пространство выборок Х= {W, N}; d - нерандомизированная функция решения статистика, отобра­жающая пространство выборок Х в пространство решений А.

Решение. Функция решения может быть записана следую­щим образом:

d(W) = a1; d(N) = a2; a1Î А; а2Î А.

Имеет место статистическая игра (W, D, R).

Опишем функцию риска:

R(Q, d) = ML(Q, a).

Считаем, что вероятности событии будут:

P{W|Q} = Q; P{N|Q} = 1 - Q.

Запишем функцию риска через а и Q.

Предположим, что для ряда месяцев вероятность отсутствия сбоев кооперированных поставок - это случайная величина с бета-распределением, имеющим параметры р > 0 и q > 0.

Функция плотности распределения вероятностей будет иметь вид:

Вид данной функции плотности распределения вероятностей можно определить, если примем бета-распределение с парамет­рами р = 3 и q = 1 (рис. 8.2 и табл. 8.10).

Рис. 8.2. Бета-распределение при р = 3, q =1

Таблица 8.10

Q

0

0,25

0,5

0,75

1

g(Q)

0

0,1875

0,75

1,6875

3

Бета-распределение является априорным распределением x состояний природы QÎW = [0,1]. Определим байесовский риск:

где M(Q) = m1, и М(Q2) = т2 - первый начальный и второй начальный момен­ты Q при бета-распределении с функцией плот­ности g(Q) соответственно.

Известно, что

Чтобы определить выражения для получения a1 и a2, необхо­димо минимизировать байесовский риск для априорного распре­деления x. Продифференцируем r(x, d) по a1 и a2 и результаты приравняем к нулю:

Вывод. Вероятность бесперебойной работы определится как т21, если в прошлом месяце не было срывов кооперированных поставок. В противном случае вероятность бесперебойной рабо­ты предприятия будет равна (т1 – m2)/(1 m1).

Пример 8.5. Оценить вероятность отсутствия перебоев в кооперированных поставках в данном месяце, если события W и N состоят соответственно в отсутствии и наличии срыва поста­вок в предыдущем месяце.

Априорное распределение - это бета-распределение с пара­метрами р = 3, q = 1. В данном распределении значения Q, близ­кие к единице, имеют большую плотность, чем значения, близ­кие к нулю.

Решение. Определим

Вычислим

Определим вероятность бесперебойной работы предприятия при отсутствии срыва поставок в предыдущем месяце:

Оценим вероятность бесперебойной работы предприятия, если в прошлом месяце было событие N - срыв кооперированных поставок: