Вывод. С помощью нерандомизированной байесовской функции получаем решение при одноступенчатом статистическом плане приемки партии изделий, если известно распределение доли дефектных изделий в партии, т.е. априорное распределение состояний природы.
Пример 8.1. Производитель продает торговой фирме большую (п = 100) партию изделий. По договору представитель торговой фирмы отбирает случайным образом п = 30 изделий. Контроль проводится по согласованной программе при одноступенчатом плане. Стоимость проверки одного изделия C1 = 180 руб., стоимость исправного изделия С2 = 2 000 руб.
Требуется найти критическое число k при предположении, что доля дефектных изделий W подчинена бета-распределению.
Предполагаем, что доля бракованных изделий при отлаженном производстве близка к нулю, поэтому g(W) будет иметь большое значение. Пусть аргументы бета-функции B(p,q) равны: p=1, q=5.
Нужно построить график распределения и определить минимальное число k. (Функция на графике при росте доли дефектных изделий будет быстро стремиться к нулю.)
Решение. Определим B(p,q):
Используя значения доли W (пусть W = 0; 0,05; 0,1; 0,2; ...,0,9;1), получаем:
Составим таблицу распределения g{W) при значении аргументов бета-функции: q = 5, р = 1 (табл. 8.9).
Таблица 8.9
Найдем критическое число k при п = 30, которое должно удовлетворять двойному неравенству:
Подставив численные значения параметров в эти неравенства, получаем k:
0,09*36 - 1 - 1 £ k £ 0,09*36 - 1.
1,24 £ k £ 2,24.
Следовательно, k = 2 .
Вывод. Критическое число равно 2, статистический план запишется (2|30).
Партия будет принята при числе бракованных в выборке из 30 изделий, не превышающем 2 шт. В противном случае партия будет забракована.
Пример 8.2. Для условий примера 8.1 при плане (2|30) подсчитать функцию потерь при: k = 3; k = 2 и возможном отказе в принятой партии двух изделий из числа непроверенных (N-n), если N = 100; k = 2 и возможном возврате изделий из числа непроверенных, если W= 0,05.
Решение. Определим функцию потерь при k = 3, полагая согласно рис. 8.1, что р = 1:
Рис. 8.1. Бета-распределение при р = 1,q=5
Найдем функцию потерь при k = 2, когда партия была принята, но затем в торговой фирме было обнаружено 2 неисправных изделия из числа непроверенных при сдаче:
L(W, a1) = 180n +2C2+2C2 = 180*30 + 4*2 000 = 5 400 + 8 000 = 13400 руб.
Вычислим функцию потерь при k = 2 и возможных отказах при W =0,05:
L(W, а1) = 180n + 2C2 + C2(N - n) = 5 400 + 4 000 + 70*0,050C2 = 9400 + 3,5*2000 = 16400 руб.
Поскольку 3,5 отказа невозможны (могут быть 3 или 4), добавляем (отнимаем) половину стоимости изделия и получаем:
L(W, a1) = (16400 ± 1000) руб.
Пример 8.3. Оставим условия примера 8.1, но изменим объем выборки. Вместо п = 30 примем п = 45. Требуется определить критическое число k, если оно удовлетворяет двойному неравенству при нерандомизированной байесовской функции решения r(x, d)=f(k):
(p+q+n) – p – 1 £ k £ (p+q+n) – p.
Решение. Запишем в принятых выше обозначениях условия: С1 = 180 руб.; С2 = 2 000 руб.; р = 1; q = 5, п = 45:
(p+q+n)=1+5+45=51;
= =0,09.Вычислим минимальное значение k:
0,09*51 - 1 - 1 £ k £ 0,09*51 - 1;
2,59 £ k £ 3,59.
Таким образом, k = 3.
Вывод. Партия будет принята при k == 1, 2 или 3, а при k = 4 или более партия изделии будет забракована, 4 бракованных изделия будут заменены в выборке на годные, остальные 55 из 100 изделий будут проверены.
Пример 8.4. Оценить возможности сбоев производства из-за нарушения кооперированных поставок.
С помощью методов математического программирования можно составить оптимальный план производства. Однако этот план при нерегулярности кооперированных поставок смежников может быть фактически не реализован.
В данной ситуации возможно вычислить вероятность регулярности кооперированных поставок, что должно соответствовать вероятности отсутствия сбоев производства.
Введем обозначения:
Q (состояние природы) - вероятность отсутствия сбоев производства Q Î W = [0,1];
А = [0,1] - область решения статистика;
а - оценка вероятности Q.
Примем в виде квадратичной функцию потерь L(Q, a)= (Q - а)2. Оценим вероятность Q по информации за предыдущий месяц. Пусть W и N - события, заключающиеся в том, что в предыдущем месяце были соответственно выполнены и не выполнены кооперированные поставки. Пространство выборок Х= {W, N}; d - нерандомизированная функция решения статистика, отображающая пространство выборок Х в пространство решений А.
Решение. Функция решения может быть записана следующим образом:
d(W) = a1; d(N) = a2; a1Î А; а2Î А.
Имеет место статистическая игра (W, D, R).
Опишем функцию риска:
R(Q, d) = ML(Q, a).
Считаем, что вероятности событии будут:
P{W|Q} = Q; P{N|Q} = 1 - Q.
Запишем функцию риска через а и Q.
Предположим, что для ряда месяцев вероятность отсутствия сбоев кооперированных поставок - это случайная величина с бета-распределением, имеющим параметры р > 0 и q > 0.
Функция плотности распределения вероятностей будет иметь вид:
Вид данной функции плотности распределения вероятностей можно определить, если примем бета-распределение с параметрами р = 3 и q = 1 (рис. 8.2 и табл. 8.10).
Рис. 8.2. Бета-распределение при р = 3, q =1
Таблица 8.10
Q | 0 | 0,25 | 0,5 | 0,75 | 1 |
g(Q) | 0 | 0,1875 | 0,75 | 1,6875 | 3 |
Бета-распределение является априорным распределением x состояний природы QÎW = [0,1]. Определим байесовский риск:
где M(Q) = m1, и М(Q2) = т2 - первый начальный и второй начальный моменты Q при бета-распределении с функцией плотности g(Q) соответственно.
Известно, что
Чтобы определить выражения для получения a1 и a2, необходимо минимизировать байесовский риск для априорного распределения x. Продифференцируем r(x, d) по a1 и a2 и результаты приравняем к нулю:
Вывод. Вероятность бесперебойной работы определится как т2/т1, если в прошлом месяце не было срывов кооперированных поставок. В противном случае вероятность бесперебойной работы предприятия будет равна (т1 – m2)/(1 – m1).
Пример 8.5. Оценить вероятность отсутствия перебоев в кооперированных поставках в данном месяце, если события W и N состоят соответственно в отсутствии и наличии срыва поставок в предыдущем месяце.
Априорное распределение - это бета-распределение с параметрами р = 3, q = 1. В данном распределении значения Q, близкие к единице, имеют большую плотность, чем значения, близкие к нулю.
Решение. Определим
Вычислим
Определим вероятность бесперебойной работы предприятия при отсутствии срыва поставок в предыдущем месяце:
Оценим вероятность бесперебойной работы предприятия, если в прошлом месяце было событие N - срыв кооперированных поставок: