Смекни!
smekni.com

Моделирование рисковых ситуации в экономике и бизнесе (стр. 22 из 29)

Большое число случайных факторов воздействует на эконо­мическую эффективность тепловой станции: цены на мазут и газ, срывы поставок мазута из-за неритмичности работы транспорта в зимнее время, особенно во время снегопадов и продолжитель­ных морозов.

Экономическая эффективность атомной электростанции бу­дет зависеть от больших затрат на строительство и устойчивости агрегатов и системы управления во время эксплуатации.

Таким образом, погодные условия будут в основном сказы­ваться на расходах по эксплуатации гидроэлектростанции и теп­ловой электростанции. Следовательно, на эффективность тепло­вой электростанции будут влиять как погодные условия, так и цены на газ и мазут.

Случайные факторы, от которых зависит экономическая эф­фективность вариантов капиталовложении, объединим в четыре возможных состояния природы - W = (Q1, Q2, Q3, Q4) с учетом окупаемости:

Q1 - цены на газ и мазут низкие и климатические условия благоприятные;

Q2 - цены на газ и мазут высокие и климатические условия благоприятные;

Q3 - цены на газ и мазут низкие и климатические условия неблагоприятные;

Q4 - цены на газ и мазут высокие и климатические условия неблагоприятные.

Решение. Представим в табл. 7.1 полученные расчеты эф­фективности W(Q, a).

Таблица 7.1

В стратегической игре (W, A, W) игрок 1 - статистик, а игрок 2 - природа.

Матрица игры имеет седловую точку, равную 30 ед.:

Если бы не было дополнительной статистической информа­ции, то на этом игра закончилась бы решением a3 - строить атом­ную электростанцию. Это было бы осторожным решением.

С помощью имеющихся временных рядов можно получить апостериорную информацию, поскольку о влиянии на цены за газ, мазут таких состоянии, как наводнения, засухи, морозы, сильные снегопады и т.п., существует статистическая информация.

По данным многолетней статистики цен и состояний получе­ны оценки апостериорного распределения состояний природы. Данные непосредственного наблюдения состояний природы по­зволили получить апостериорное распределение состояний при­роды:

P(Q1) = 0,15; Р(Q3) = 0,20;

P(Q2) = 0,30; P(Q4) = 0,35.

Имея апостериорное распределение состояний природы, мож­но преобразовать стратегическую игру (W, A, W) в статистичес­кую, в которой платеж игроку (статистику) будет определен как математическое ожидание в данном распределении состояний природы M[W(Q, a)].

Математическое ожидание максимизирует оптимальная бай­есовская стратегия статистика, что эквивалентно минимизации байесовского риска в статистической игре, в которой функция потерь L(Q, a) = -W(Q, a).

Для отдельных решений получим математические ожидания M[W(Q, a)]:

M[W(Q, a1)] = 50*0,15 + 50*0,30 + 25*0,20 + 25*0,35 = 36,25;

M[W(Q, а2)] = 40*0,15 + 25*0,30 + 35*0,20 + 20*0,35 = 27,50;

M[W(Q, a3)]=30*0,15+30*0,30+30*0,20+30*0,3 5=30,00;

max M[W(Q, a)]=M[W(Q, a1)]=36,25.

Вывод. Оптимальным решением будет инвестирование средств в проект а1 - строительство гидроэлектростанции.

7.2. ИНВЕСТИЦИИ В РАЗРАБОТКУ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Задача 7.2. Разведка недр в регионе показала наличие место­рождений серы. Требуется решить, разрабатывать месторождение, т. е. инвестировать строительство комплекса (а1), или воздержать­ся (a2). Таким образом, множество решений А= {а1, а2}. Прове­денные геологические исследования позволили открыть месторож­дение, но не дали ответа, строить или не строить комплекс.

Состоянием природы в данном случае будет глубина залега­ния, так как истинное залегание пластов неизвестно. Если глу­бина небольшая, то экономическая эффективность разработки будет высокой. Если глубина большая, то эффективность может оказаться низкой и добыча серы может не окупиться.

Введем обозначения для состояний природы:

Q1 - месторождение находится на глубине, благоприятной для разработки;

Q2 - месторождение находится как на малой, так и на боль­шой глубине;

Q3 - месторождение находится в основном на большой глу­бине.

Решение. Проведем экономический расчет эффективности и результаты расчета в рублях представим в табл. 7.2.

Таблица 7.2

Нулевая эффективность относится к случаю отказа от разра­ботки, a1 = –30 означает, что разработка и добыча месторожде­ний серы не оправдают затрат, а, наоборот, приведут к убыткам в 30 тыс. руб.

Полную неопределенность можно уменьшить благодаря до­полнительной статистической информации. Тогда задача станет не стратегической, а статистической. Эту информацию можно получить, проведя сейсморазведку и поисковое бурение, что позволит более точно, чем при разведочных работах, определить среднюю глубину Залегания пластов серы, так как станут изве­стны вероятности залегания. Это несколько снизит эффектив­ность, но оправдает дополнительные затраты. По результатам дополнительных исследований получим множество

Х = 1, х2, x3},

где х1, х2, x3 - малая средняя, умеренная средняя и большая средняя глубина залегания пластов соответственно.

По данным дополнительных исследований были оценены условные вероятности получения отдельных результатов хi Î Х для соответствующих состояний природы QÎW:

От стратегической игры (W, A, W) переходим к задаче в ус­ловиях риска (W, D, R).

При этом игроком 1 будет природа, а игроком 2 - статистик. Обозначим D - множество стратегий статистика, т. е. множество функций d, отображающих множество Х во множество А.

Функцией платежей будет функция риска R(Q, d) = M[L(Q, а)], где функция потерь принимает значения L(Q, a) = –W(Q, а) (табл. 7.3).

Таблица 7.3

Составим таблицу множества возможных нерандомизирован­ных функций d (dÎD; 23 = 8) решений при разных хi (табл. 7.4). Рассчитаем по табл. 7.4 значения риска. Воспользуемся дан­ными вероятностей состояний природы и получим на основании функции потерь их математические ожидания, т. е. функции риска:

Таблица 7.4

Продолжая далее расчеты, получим таблицу значении риска. Матрица (табл. 7.5) имеет седловую точку, равную нулю. Но это решение нельзя отнести к разумной стратегии. С учетом чрезмерной осторожности всегда предполагается принятие ре­шения a2 - не разрабатывать месторождение, не инвестируя - не рискуешь, но и прибыли не получишь.

Таблица 7.5

Оптимальной стратегией статистика, представляющего инве­стиционную организацию, будет байесовская функция решения, которую можно оценить с использованием функции распределе­ния вероятностей залегания серы на разной глубине, полученной на основе полных, достаточно обширных геологических иссле­дований и равной: P(Q1) = 0,2; P(Q2) = 0,5; P(Q3) = 0,3.

С учетом априорного распределения r(x, d) можно опреде­лить оптимальную байесовскую функцию, минимизируя риски.

Для этого вычислим все восемь значений и возьмем мини­мальное из них:

Из полученных данных заключаем, что

Итак, оптимальной байесовской стратегией статистика в ста­тистической игре (W, D, R), которая моделирует эксплуатацию месторождений, будет функция решения d2, в которой d2(x1) = a1; d2(x2)=a1; d2(x3)=a2.

Вывод. Инвестиции оправдывают затраты и могут дать при­быль 27,3 тыс. руб., если дополнительные исследования дали результат x1 - малая глубина или х2 - средняя глубина залегания серы.

Только в случае, если геологические исследования дадут результаты x3 (в среднем глубокое залегание), нужно принять решение а2: в связи с экономической неэффективностью разра­ботки месторождения воздержаться от его инвестирования.

Глава 8 ЗАДАЧИ ИЗ РАЗНЫХ ОБЛАСТЕЙ ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ

8.1. ПРОЕКТИРОВАНИЕ МАРШРУТОВ ГОРОДСКОГО ТРАНСПОРТА

Задача 8.1. Выбор трассы новой автобусной линии в городе. Построен за городом новый жилой микрорайон, который нужно связать с центром города. Имеем исходную стратегическую игру (W,A,L). Статистик пришел к выводу, что линию можно провести до пункта А1, или А2, или А3. Решение А = 1, а2, а3}, где a1, означает проведение трассы до А1, а2 - до А2, а3 - до А3, причем А1 и А3 находятся в разных концах города. Множеством состоя­ний природы W являются Q1, Q2, Q3 - состояния, когда большин­ство жителей микрорайона работает соответственно в окрестнос­ти пункта А1, пункта А2 и пункта А3, находящегося в самом центре города.