Смекни!
smekni.com

Моделирование рисковых ситуации в экономике и бизнесе (стр. 21 из 29)

Остановимся на некоторых нестандартных принципах при­нятия решений.

Принцип Байеса - Лапласа. Данный принцип отступает СП-условий полной неопределенности. В нем предполагается, что возможные состояния природы могут достигаться с вероятнос­тями Р1, P2,..., Рn при условии, что Р1+ P2+ ,...,+ Рn =1. Байес в 1763 г. предложил считать равными вероятности отдельных состояний природы.

В 1812 г. Лаплас обобщил этот принцип на случай различ­ных вероятностей, но тем не менее говорят и о байесовском подходе. Если напомнить, что байесовские функции решения входят в класс допустимых функций, то будет понятно их широ­кое использование в практике принятия решений (см. гл. 3).

Принцип Гурвица. Этот принцип является упрощенным вариантом принципа Байеса - Лапласа. Если известны вероят­ности отдельных состояний, то берут среднее арифметичес­кое результатов при наилучшем решении. Иногда, если суще­ствует возможность определить вес наихудшего и наилучшего решений, то используют их взвешенную среднюю арифмети­ческую.

Проиллюстрируем применение данного принципа на приме­ре строительства предприятий при четырех разных состояниях природы и наличии четырех разных типов предприятий.

Задача 6.2. Имеются определенные средства на возведение предприятий. Необходимо наиболее эффективно использовать капиталовложения с учетом климатических условий, подъезд­ных путей, расходов по перевозкам и т.д. Сочетание этих фак­торов по влиянию на эффективность капиталовложений можно разбить на четыре состояния природы B1, В2, В3, В4. Типы предприятий обозначим А1, А2, А3, А4. Эффективность строи­тельства определяется как процент прироста дохода по отно­шению к сумме капитальных вложений. Информацию, отража­ющую постановку задачи, представим в табл. 6.2.

Таблица 6.2

Варианты решений

1. Решение по принципу стратегических игр, по принципу максимина:

= 4 . Нужно строить предприятие А3.

Изменим условия задачи и предположим, что в табл. 6.2 отражены затраты на строительство предприятий, тогда выбор типа предприятий следует осуществить по принципу минимакса:

=9. Нужно строить предприятие А1 или А4.

2. Решение по принципу Гурвица.

Если известны все вероятности, определяющие состояния природы, сделаем выбор с помощью среднего арифметического лучшего и худшего результатов.

Согласно табл. 6.2 это будет рекомендация строить предпри­ятие А2, обеспечивающее максимальную среднюю эффективность Ф =

= 8.

3. Применим принцип Байеса при равных вероятностях со­стояний природы Р(В1)=Р(В2)=Р(В3)=Р(В4)=1/4. Определим рентабельность, соответствующую решению А1, т. е. М1:

Далее определяем М2, М3, и М4.

Выводы. Предполагая, что все вероятности состояний при­роды равны, следует строить предприятие А3, так как M3 = 7,5 = max (M1, M2, M3, M4). Отметим, что принцип Байеса-Лапласа имеет смысл применять, если возможно оценить веро­ятности отдельных состояний природы. При этом необходимо, чтобы решения также повторялись многократно.

Когда события повторяются многократно, действует закон больших чисел, согласно которому достигается максимальный средний результат.

При единичных решениях принцип Байеса - Лапласа не следует применять.

Принцип Гурвица фактически является упрощением байесов­ских оценок. Гурвиц допускает, в частности, при отсутствии информации о вероятностях возникновения отдельных состоя­ний природы брать среднее арифметическое значение результа­тов наилучшего и наихудшего решений.

6.2.2. МАКРОЭКОНОМИЧЕСКИЕ РЕШЕНИЯ

При применении теории статистических игр на предприятии, в фирме бывает возможным получить дополнительную статис­тическую информацию, которая позволяет перейти от стратеги­ческой к статистической игре с природой. Очень часто при воз­можности многократного повторения как состояний природы, так и решений статистика мы можем принимать минимаксные бай­есовские решения.

Для макроэкономических задач значительно реже удается получать информацию о состояниях природы. Кроме того, имея распределение вероятностей ее состояний, мы не всегда можем этой информацией воспользоваться. Принятие решения может носить одноразовый характер. В этой ситуации наилучшая бай­есовская стратегия при многократном принятии решения утра­чивает свои оптимизационные свойства.

Задачи, решаемые в условиях неопределенности, имеющие характер игры с природой, делятся на два типа:

1) в условиях полной неопределенности, когда отсутствует возможность получения дополнительной статистической инфор­мации о состояниях природы; основной моделью при этом слу­жит стратегическая игра (W, A, L), которая не преобразуется в статистическую;

2) в условиях риска, если существует возможность сбора до­полнительной статистической информации о распределении со­стояний природы; эти задачи можно преобразовать к статисти­ческой игре (W, D, R), в которой функции риска рассматривают­ся как платежи.

Рассмотрим практический пример.

Задача 6.3. Получение лицензии на новую продукцию.

Требуется выбрать лучшую лицензию на выпуск легкового автомобиля у иностранных фирм. Имеются четыре предложения, следовательно, множество решении А = {а1, а2, а3, а4}, где а1 -решение о покупке лицензии у инофирмы Ai (i =

).

Фирмы требуют неодинаковые суммы за лицензии в зависи­мости от различных затрат на организацию производства и из­держек эксплуатации.

Известно, что основным требованиям владельцев автомоби­лей (эстетика, количество мест в салоне, скорость) удовлетворяют все четыре фирмы. В результате главным критерием являют­ся затраты, связанные со сделкой.

Пусть на основе экономического расчета вычислена эффек­тивность покупки каждой из четырех лицензий. Эта эффектив­ность зависит от длительности периода, в течение которого мож­но будет выпускать автомобили по лицензии, учитывая уровень их рентабельности и соответствия последним достижениям на­уки и техники в области автомобилестроения. Множество состо­яний природы

, где Q1, Q2 - рентабельность и со­ответствие техническому уровню выпущенных по приобретен­ной лицензии первого и второго автомобилей, достигаемые со­ответственно через 15 и 25 лет.

Представим формулу экономической эффективности:

где У - продажная цена автомобиля;

С - себестоимость;

W- выигрыш игрока 1, в данном случае статистика, представляю­щего автомобильную промышленность.

Отразим в табл. 6.3 полученные значения эффективности W(Q, a).

Таблица 6.3.

О стратегиях природы нет информации, и ее невозможно получить.

Решение нужно найти при полной неопределенности, так как нет данных для перехода от стратегической игры к статистической.

Применим максиминный критерий Вальда.

Для этого перепишем табл. 6.3 и найдем минимальные зна­чения по строке и максимальные - по столбцу. Это определит матрицу игры (табл. 6.4).

Таблица 6.4

Матрица игры (W, A, W) имеет седловую точку, равную 22 %, поскольку

Итак, оптимальной нерандомизированной максиминной стра­тегией статистика (игрока 1), представляющего интересы авто­мобильной промышленности, будет решение а2, что соответствует покупке лицензии у фирмы А2 на производство легкового авто­мобиля.

Это наиболее осторожная стратегия в игре с природой при отсутствии дополнительной статистической информации. При этом в качестве функций платежей была принята эффективность сделки W(Q , a) = 22.

Глава 7 ИНВЕСТИЦИОННЫЕ РЕШЕНИЯ

7.1. ВЫБОР ОПТИМАЛЬНОГО ВАРИАНТА КАПИТАЛОВЛОЖЕНИЙ ПРИ СТРОИТЕЛЬСТВЕ ЭЛЕКТРОСТАНЦИЙ

Задача 7.1. Необходимо построить в регионе электростанцию большой мощности. В данном регионе имеются возможности:

а1 - построение большого водохранилища и гидроэлектро­станции;

a2 - сооружение тепловой электростанции на основном (газовом) топливе и резервном (мазуте);

a3 - сооружение атомной электростанции.

Возможные решения А = 1, а2, а3}. Экономическая эффек­тивность каждого варианта рассчитана проектным институтом, который учитывал затраты на строительство и эксплуатацион­ные расходы.

На эксплуатационные расходы гидроэлектростанции влияют климатические условия, например, такие, как погодные условия, определяющие уровень воды в водохранилищах.