Смекни!
smekni.com

Моделирование рисковых ситуации в экономике и бизнесе (стр. 19 из 29)

Глава 6 СТАТИСТИЧЕСКИЕ ИГРЫ

6.1. ОБЩИЕ СВЕДЕНИЯ

Создателем теории статистических игр считается А. Вальд. Он показал, что в теории принятия решений статистические игры являются основным подходом, если решение принимается в ус­ловиях частичной неопределенности.

Статистические модели представляют собой игру двух лиц (человека и природы) с использованием человеком дополнитель­ной статистической информации о состояниях природы.

Она существенно отличается от антагонистической игры двух лиц с нулевой суммой, где выигрыш одного равен проигрышу другого.

В статистической игре природа не является разумным игро­ком, который стремится выбрать для себя оптимальные страте­гии. Этот игрок не заинтересован в выигрыше. Другое дело -человек, в данном случае статистик. Он имеет целью выиграть игру с воображаемым противником, т. е. с природой.

Игрок-природа не выбирает оптимальной стратегии, но ста­тистик должен стремиться к определению распределения веро­ятностей состояния природы. Следовательно, основными отли­чиями статистической игры от стратегической являются:

• отсутствие стремления к выигрышу у игрока-природы, т. е. отсутствие антагонистического противника;

• возможность второго игрока - статистика провести статис­тический эксперимент для получения дополнительной информа­ции о стратегиях природы.

Так, например, статистик, работающий в фирме «Одежда», может изучить многолетние данные о погодных условиях в местностях, где одежда будет продаваться, и в зависимости от наи­более вероятного состояния погоды выработать рекомендации, куда и какое количество партий изделий отправлять, где выгод­нее и на каком уровне провести сезонное снижение цен и т. д.

Таким образом, теория статистических решений является теорией проведения статистических наблюдений, обработки этих наблюдений и их использования.

В теории статистических решений основные правила могут быть детерминированными и рандомизированными.

В статистических играх используются понятия: риск (функ­ция риска), потери (функция потерь), решение (функция реше­ния), функции распределения при определенных условиях.

Необходимо пояснить понятие рандомизации. Это статисти­ческая процедура, в которой решение принимается случайным образом. Математическая энциклопедия это определяет более подробно: «Статистическая процедура принятия решения, в ко­торой по наблюденной реализации х случайной величины Х решение принимается с помощью розыгрыша по вероятностно­му закону, называется рандомизацией»*.

* Математическая энциклопедия. Т.4. - М.: Советская энциклопедия, 1984. - С. 865.

Введем условные обозначения:

В или W - множество состояний природы;

В. или Qj - отдельное состояние природы, Qj Î W;

А — множество действий (решений) статистика;

а - отдельное решение статистика, a Î А;

L - функция потерь. Множества W и А предполагаются чис­ленно определенными, поэтому представляется возможным ус­тановить распределение вероятностей. Если принятое статисти­ком решение a Î А и состояние природы Q Î W, то функция потерь запишется L(Q; a);

D - совокупность всех нерандомизированных (чистых) фун­кций решения;

d(

) - функция решения;
-
случайный вектор. Характери­стикой функции решения является функция потерь. Статистик может перед принятием одного из возможных решений провести эксперимент, который заключается в наблюдении случайной переменной х. В итоге представляется возможным получить рас­пределение этой случайной переменной в зависимости от состо­яния природы Q;

F(x|Q) - функция условного распределения случайной пере­менной х. Предполагается, что для каждого состояния природы Q известно значение функции F(x|Q);

п - объем выборки;

xQ множество всех выборок объема п. После получения ре­зультата эксперимента х статистик использует некоторую функ­цию решения и принимает одно из решений а Î А, когда резуль­тат эксперимента - вектор

:

R — функция риска;

R(Q,d) - функция риска, определенная на прямом произведе­нии W´D множества состояний природы и множества решений.

Игра (W, A, L) - исходная стратегическая игра, соответствующая стратегической задаче принятия решения;

G = (W, D, R) - статистическая игра;

s - рандомизированная функция решения;

D* - множество случайных функций решения, s Î D*. Под­разумевается, что D Ì D*, так как чистая функция решения (не­рандомизированная) может быть рассмотрена как смешанная, ко­торая используется с вероятностью, равной 1;

G(Q) - функция априорного распределения состояний при­роды Q;

X - совокупность всех априорных распределений x Î X.

6.2. СВОЙСТВА СТАТИСТИЧЕСКИХ ИГР

Функция решения, отображающая множество выборок XQ в множество решений статистика A, называется нерандомизирован­ной (чистой) функцией решения статистика. Так, по результа­там эксперимента

статистик определяет, какое решение а Î А он должен выбрать. Для выбора из множества D наилучшей функции решения он использует функцию риска.

Функция риска зависит от множества состояний природы и от множества функций решения и принимает значение, выражен­ное действительными числами. Она определяет математическое ожидание функции потерь при некотором состоянии природы Q и известной статистику функции распределения F(

|Q), когда а=d(
).

Представим функцию риска:

,

где M - знак математического ожидания;

L(Q, a) - функция потерь при состоянии природы Q и d(

) = a.

В теории статистических функций любую неотрицательную функцию L, определенную прямым произведением W´D, назы­вают функцией потерь. Значение L(Q,d) функции потерь L в про­извольной точке (Q, d)Î W´D интерпретируют как ущерб, к ко­торому приводит принятие решений d, dÎD, если истинное зна­чение параметра есть Q, Q Î W.

Выражение W´D - прямое произведение множества состоя­ний природы и множества функций решения. Функция R(Q, d) не является случайной величиной, а принимается как платеж ста­тистика в его игре с природой при следующих условиях:

• состояние природы фиксировано;

• функция решений выбрана, d Î D.

Стратегическая игра (W, A, L) становится статистической, G = (W, D, R), если используется результат эксперимента - век­тор

. Игра называется статистической, если в ней:

XQ - множество n-мерных выборок;

D - множество функций решений, которые преобразуют XQ в А;

W - множество состояний природы;

R(Q, d) - функция риска.

Статистическая игра записывается как G = (W, D, R). Данная игра является игрой двух лиц с нулевой суммой, где dÎD -функция решения статистика, а риск R(Q, d) статистика - пла­теж природе.

Статистик может не прибегать к рандомизации, если он ис­пользует как оптимальную байесовскую функцию решения r (см. разд. 6.2.1).

Рандомизация на стороне статистика проводится двумя мето­дами:

1) применение решений аÎА с определенными вероятностя­ми (смешение решений);

2) смешение чистых функций решения dÎD, т.е. рандомиза­ция функций решения.

Чаще применяется второй метод.

Распределение вероятностей d на множестве D чистых фун­кций решения d называется рандомизированной (смешанной) функцией решения статистика.

Функция риска становится случайной величиной, если экс­периментатор применяет в статистической игре случайную фун­кцию решения dÎD*, т. е. когда каждой чистой функции реше­ния dÎD приписывается вероятность, с которой она должна использоваться.

Платежом будет математическое ожидание функции потерь, взятое для некоторого состояния природы Q при распределении d, определенном на множестве чистых функций решения D:

Если статистик использует случайные функции решения dÎD*, то этим расширяется (обобщается) статистическая игра.

Расширенная статистическая игра (W, D*, R) называется так­же смешанным расширением статистической игры с рандоми­зацией на стороне статистика.

Дальнейшее расширение статистической игры может быть достигнуто при предположении, что природа также «применяет» стратегию при «выборе» своего состояния Q.

Априорное распределение вероятностей x на множестве W состояний природы означает распределение до проведения экспе­римента. Это априорное распределение xÎX состояний природы является случайной (смешанной) стратегией природы в статисти­ческой игре, где природа не рассматривается как разумный игрок.

Если Q предполагается случайной величиной с априорным распределением x, то риск R(Q,d) становится случайной пере­менной при фиксированной функции решения d. В данном слу­чае математическое ожидание риска R(Q,d) при априорном рас­пределении x, задаваемом функцией распределения G(Q), оп­ределяется как