Применим необходимое условие оптимальности - продифференцируем выражение в квадратных скобках по q и приравняем производную нулю:
где q* - оптимальное значение q. В результате получаем:
Предполагая известным вид функции U, из соотношения (4.6) находим значение q*.
Рассчитаем ожидаемую прибыль страховой компании, учитывая, что страховой случай имеет вероятностный характер.
Если страховой случай произошел, компания получает доход pq – q. Если страховой случай не наступил, компания получает доход pq. Поэтому ожидаемая прибыль компании
р(pq - q)+ (1 - р) pq = ppq - pq + pq - ppq = q(p - р),
где р - вероятность наступления страхового случая.
Конкуренция между страховыми компаниями уменьшает прибыль, которая в условиях совершенной конкуренции стремится к нулю, т.е. из условия q(p - р) = 0 следует, что p
р.Это означает, что доля платежа от страхуемой суммы p приближается к вероятности несчастного случая р. Если соотношение p = р ввести в условие максимума ожидаемой полезности, то получим:
.
Если потребитель не склонен к риску, то
, и из равенства первых производных следует равенство аргументов, т.е.W – L + (1 - p)q* =W – pq*,
или
– L + q* – pq* = –pq*,
откуда
q* = L.
Вывод. Страховаться целесообразно на сумму, которую можно потерять в результате несчастного случая.
ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ
Задача 4.4. Допустим, что функция полезности ЛПР логарифмическая U(W) = ln(W) и весь его капитал составляет 5 тыс. руб.
Возникают две ситуации:
1. С вероятностью 0,5 ЛПР может выиграть и проиграть 1 тыс. руб. Есть ли смысл покупать страховой полис, устраняющий риск, за 125 руб.?
2. ЛПР рискнул, отказался от страхового полиса и проиграл 1 тыс. руб. Та же ситуация возникла во второй раз. Следует ли ему застраховаться от риска на прежних условиях (125 руб. за страховой полис). Что целесообразнее: приобрести полис или принять участие в игре?
Задача 4.5. Предположим, что ваша функция полезности определяется логарифмической зависимостью U(W)=ln(W) и вы сталкиваетесь с ситуацией, когда можете с равными шансами выиграть и проиграть
1 тыс. руб. Сколько вы готовы заплатить, чтобы избежать риска, если текущий уровень вашего благосостояния равен 10 тыс. руб.? Сколько вы заплатили бы, если бы ваше состояние было 1 млн руб.?
Задача 4.6. Мелкий бизнесмен сталкивается с ситуацией, когда с вероятностью 10 % пожар может уничтожить все его имущество, с вероятностью 10 % - уменьшить его недвижимость до 50 тыс. руб., с вероятностью 80 % огонь не принесет ему вреда и стоимость его имущества останется равной 100 тыс. руб. Какую максимальную сумму он готов заплатить за страховку, если его функция полезности имеет логарифмический вид U(W) = ln(W), а страховые выплаты составляют 100 тыс. руб. для первого случая и 50 тыс. руб. для второго случая?
Задача 4.7. Пусть функция полезности «нового русского» имеет вид:
U(W) = 10 + 2W,
где W - денежный выигрыш.
Бизнесмен может вложить в строительство магазина 25 тыс. руб. и считает, что с вероятностью 0,5 он получит прибыль в 32 тыс. руб. и с вероятностью 0,5 потеряет весь свой капитал. Определите:
• Следует ли осуществлять инвестирование проекта?
• Если будет сделано инвестирование, то какова ожидаемая полезность этого мероприятия?
Задача 4.8. В профессиональном теннисе нередко имеет место практика дележа призов за первое и второе места поровну между финалистами (тайный сговор до начала состязания). Например, если первый приз равен 100 000 дол., а второй - 32 000 дол., то каждый получает по 66 000 дол. (66 000 = (100 000 + 32000) / 2). Определите:
• Если игрок склонен к риску и уверен, что его выигрыш и проигрыш равновероятны (50 %), то согласится ли он участвовать в дележе?
• Предположим, что функция полезности одного из игроков имеет вид, представленный на рис. 4.6. Пожелал бы такой игрок участвовать в дележе призов, если шанс выиграть составляет 50 %?
• Как правило, игроки, попавшие в финал, не соглашаются на предварительный дележ призов, поскольку они уверены в своей победе. Какова должна быть минимальная вероятность выигрыша, чтобы с представленной на рис. 4.6 функцией полезности рассчитывать на получение приза за первое место?
Рис. 4.6. Функция полезности одного из игроков в задаче 4.8
Задача 4.9. Предполагается, что типичная функция полезности дохода для человека имеет вид, показанный на рис. 4.7. Определите:
• Предпочтет ли такой человек получить со 100 %-ной определенностью доход В или принять участие в игре, в которой с вероятностью 0,5 получает доход А и с вероятностью 0,5 - доход С, где В = А/2 + С/2?
Рис. 4.7. Типичная функция полезности дохода для человека
• Предпочтет ли человек с такой функцией полезности получить со 100 %-нои определенностью доход D или принять участие в игре, в которой выигрывает сумму С с вероятностью 0,5 и сумму Е с вероятностью 0,5 (D=C/2 + E/2)?
Задача 4.10. Управляющий банком во время своего отпуска желает совершить кругосветное путешествие, которое стоит 10 000 дол. Полезность путешествия можно оценить количеством денег, потраченных на отдых (W).
Пусть его функция полезности выражается зависимостью U(W) = ln(W). Определите:
• Если существует вероятность, равная 0,25, потерять во время путешествия 1 000 дол., то какова ожидаемая полезность кругосветного путешествия?
• Отдыхающий банкир может приобрести страховку от потери 1 000 дол. за 250 дол., купив, например, дорожные чеки. Покажите, что ожидаемая полезность в случае, когда он покупает страховку, выше по сравнению с ситуацией, когда потеря 1 000 дол. происходит без страхования.
• Какова максимальная денежная сумма, которую банкир готов заплатить за страховку от потери 1 000 дол.?
Глава 5 ФИНАНСОВЫЕ РЕШЕНИЯ В УСЛОВИЯХ РИСКА
5.1. ДИНАМИЧЕСКИЕ МОДЕЛИ ПЛАНИРОВАНИЯ ФИНАНСОВ
Опишем модели оптимального многоэтапного планирования инвестиции в различные проекты. Индекс риска, связанного с реализацией каждого из проектов, оценивается экспортно по десятибалльной шкале. Каждому допустимому проекту отвечает свой заданный индекс риска. Общий подход к построению моделей в форме линейного программирования демонстрируется на задачах 5.1 и 5.2.
Задача 5.1. Акционерное общество (АО) закрытого типа заключило контракт на покупку нового оборудования для производства железобетонных блоков стоимостью 750 000 дол. В соответствии с условиями контракта 150 000 дол. в качестве аванса необходимо уплатить через 2 месяца, а остальную сумму - через 6 месяцев, когда оборудование будет установлено. Чтобы расплатиться полностью и в указанные сроки, руководство АО планирует создать целевой фонд, предназначенный для инвестиций. Поскольку инвестиционная деятельность принесет дополнительную наличность к моменту расчета за приобретенное оборудование, отложить следует не всю сумму в 750 000 дол., а меньшую. Сколько именно, зависит от имеющихся возможностей и правильности организации процесса инвестирования. Акционерное общество решило сосредоточиться на 4 направлениях (12 возможностях) использования средств целевого фонда. Данные для задачи финансового планирования приведены в табл. 5.1.
Руководство АО ставит перед собой три основные цели:
1) при данных возможностях инвестирования и утвержденного графика выплат должна быть разработана стратегия, минимизирующая наличную сумму денег, которые АО направляет на оплату оборудования по контракту;
Таблица 5.
Направления использования инвестиций | Возможные начала реализации инвестиционных проектов, мес. | Длительность инвестиционного проекта, мес. | Процент за кредит | Индекс риска |
А | 1,2,3,4,5,6 | 1 | 1,5 | 1 |
В | 1,3,5 | 2 | 3,5 | 4 |
С | 1,4 | 3 | 6,0 | 9 |
D | 1 | 6 | 11 | 7 |
2) при разработке оптимальной стратегии средний индекс риска инвестиционных фондов в течение каждого месяца не должен превышать 6. Этот показатель индекса риска, как предполагается, отвечает возможностям менеджера фирмы по управлению проектами;
3) в начале каждого месяца (после того, как сделаны новые инвестиции) средняя продолжительность погашения инвестиционных фондов не должна превышать 2,5 месяца. Причины те же, что и в п. 2.
Таким образом, среди потенциально реализуемых проектов выбираются наиболее экономически эффективные, при этом проекты повышенной рисковости должны компенсироваться менее рисковыми, а очень длинные проекты должны выполняться одновременно с более краткосрочными. Для решения данной задачи необходимо, во-первых, подготовить и систематизировать имеющуюся исходную информацию и, во-вторых, построить адекватную сформулированным целям экономико-математическую модель. Динамика возможных вложений и условий возврата денежных средств отражена в табл. 5.2.