Смекни!
smekni.com

Моделирование рисковых ситуации в экономике и бизнесе (стр. 11 из 29)

Проводя соответствующие вычисления для случаев производ­ства 6, 7, 8 и 9 ящиков, получаем:

6 ящиков

7 ящиков

8 ящиков

9 ящиков

Вывод. Из представленных результатов расчетов с учетом полученных показателей рисков - средних квадратичных отклоне­нии - очевидно, что производить 9 ящиков при любых обстоятель­ствах нецелесообразно, ибо средняя ожидаемая прибыль, равная 317, меньше, чем для 8 ящиков (352,5), а среднее квадратичное откло­нение (76) для 9 ящиков больше аналогичного показателя для 8 ящиков (63,73). А вот целесообразно ли производство 8 ящиков по сравнению с 7 или 6 - неочевидно, так как риск при производстве 8 ящиков (sx = 63,73) больше, чем при производстве 7 ящиков (sx = 28,5) и тем более 6 ящиков, где sx = 0. Вся информация с учетом ожидаемых прибылей и рисков налицо. Решение должен принимать генеральный директор компании «Российский сыр» с учетом его опыта, склонности к риску и степени достоверности показателей вероятностей спроса: 0,1; 0,3; 0,5; 0,1. Авторы, учиты­вая все приведенные числовые характеристики случайной величи­ны - прибыли, склоняются к рекомендации производить 7 ящиков (не 8, что вытекает из максимизации прибыли без учета риска!). Читателю предлагается обосновать свой выбор.

Задача 3.6. Рассмотрим упомянутую выше проблему закупки угля для обогрева дома. Имеются следующие данные о количестве и ценах угля, необходимого зимой для отопления дома (табл. 3.4). Вероятности зим: мягкой - 0,35; обычной - 0,5; холодной - 0,15.

Таблица 3.4

Зима

Количество угля, т

Средняя цена за 1 т в ф. ст.

Мягкая

4

7

Обычная

5

7,5

Холодная

6

8

Эти цены относятся к покупкам угля зимой. Летом цена угля 6 ф. ст. за 1 т, у вас есть место для хранения запаса угля до 6 т, заготавливаемого летом. Если потребуется зимой докупить недо­стающее количество угля, докупка будет по зимним ценам. Пред­полагается, что весь уголь, который сохранится до конца зимы, в лето пропадет.* Сколько угля летом покупать на зиму?

* Предположение делается для упрощения постановки и решения задачи.

Решение. Построим платежную матрицу (табл. 3.5).

Таблица 3.5

Произведем расчет ожидаемой средней платы за уголь (табл. 3.6).

Таблица 3.6

Зима

Средняя ожидаемая плата

Мягкая

-(24*0,35+31,5*0,5+40*0,15)= -30,15

Обычная

-(30*0,35+30*0,5+38*0,15)= -31,2

Холодная

-(36*0,35+36*0,5+36*0,15)= -36

Как видим из табл. 3.6, наименьшая ожидаемая средняя пла­та приходится на случай мягкой зимы (30,15 ф. ст.). Соответ­ственно если не учитывать степени риска, то представляется целесообразным летом закупить 4 т угля, а зимой, если потребу­ется, докупить уголь по более высоким зимним ценам.

Если продолжить исследование процесса принятия решения и аналогично задаче 3.5 вычислить средние квадратичные откло­нения платы за уголь для мягкой, обычной и холодной зимы, то соответственно получим:

для мягкой зимы sx = 5,357;

• для обычной зимы sx = 2,856;

• для холодной зимы sx = 0.

Минимальный риск, естественно, будет для холодной зимы, однако при этом ожидаемая средняя плата за уголь оказывается максимальной - 36 ф. ст.

Вывод. Мы склоняемся к варианту покупки угля для обыч­ной зимы, так как согласно табл. 3.6 ожидаемая средняя плата за уголь по сравнению с вариантом для мягкой зимы возрастает на 3,5 %, а степень риска при этом оказывается почти в 2 раза меньшей (sx = 2,856 против 5,357).

Отношение среднего квадратичного отклонения к математи­ческому ожиданию (средний риск на затрачиваемый 1 ф. ст.) для обычной зимы составляет

= 0,0915 против аналогичного показателя для мягкой зимы, равного
= 0,1777, т.е. вновь различие почти в 2 раза.

Эти соотношения и позволяют нам рекомендовать покупку угля, ориентируясь не на мягкую, а на обычную зиму.

Задача 3.7. АО «Фото и цвет» - небольшой производитель химических реактивов и оборудования, которые используются не­которыми фотостудиями при изготовлении 35-мм фильмов. Один из продуктов, который предлагает «Фото и цвет», - ВС-6. Пре­зидент АО продает в течение недели 11, 12 или 13 ящиков ВС-6. От продажи каждого ящика АО получает 35 дол. прибыли. Как и многие фотографические реактивы, ВС-6 имеет очень малый срок годности. Поэтому, если ящик не продан к концу недели, он должен быть уничтожен. Каждый ящик обходится предприятию в 56 дол. Вероятности продать 11, 12 и 13 ящиков в течение недели равны соответственно 0,45; 0,35; 0,2. Как вы советуете поступить? Как вы порекомендуете поступить, если бы «Фото и цвет» мог сделать ВС-6 с добавкой, значительно про­длевающей срок его годности?

Решение. Матрицу игры с природой (здесь АО «Фото и цвет» - игрок с природой, а природа - торговая конъюнкту­ра) строим по аналогии с рассмотренными выше задачами (табл. 3.7).

Таблица 3.7

* В скобках приведены вероятности спроса на ящики.

Расчет средней ожидаемой прибыли производится с исполь­зованием вероятностей состояний природы, как и в задачах 3.5 и 3.6.

Вывод. Наибольшая из средних ожидаемых прибылей (385 дол.) отвечает при заданных возможностях спроса произ­водству 11 ящиков ВС-6.

Производство 11 ящиков в неделю и следует рекомендовать АО «Фото и цвет», ибо показатель риска - среднее квадратичное отклонение, как нетрудно убедиться, sx = 0 - минимален при максимальной средней ожидаемой прибыли.

Если срок службы химического реактива будет удлинен, то его производство даже при прежнем спросе можно увеличить, частично поставляя на склад для последующей реализации.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Задача 3.8. Компания, производящая стиральный порошок, работа­ет в условиях свободной конкуренции. Порошок выпускается блоками, причем цена одного блока в будущем месяце является неопределенной: 10 руб. с вероятностью 0,3; 15 руб. с вероятностью 0,5; 20 руб. с веро­ятностью 0,2. Полные затраты (ПЗ) на производство Q блоков стираль­ного порошка определяются зависимостью ПЗ = 1000 + 5Q + 0,0025Q2.

Постройте таблицу решений и определите суточный выпуск про­дукции компании (в блоках), при котором среднесуточная прибыль будет максимальной.

Задача 3.9. Спрос на некоторый товар, производимый монополис­том, определяется зависимостью Q = 100 — 5р + 5j, где j - достоверно неизвестный уровень дохода потребителей, р - цена товара. По оцен­кам экспертов,

Полные затраты на производство товара определяются зависимос­тью ПЗ = 5 + 4Q + 0,05Q2. Сколько товара должен выпускать монопо­лист и по какой цене продавать, чтобы максимизировать свою ожида­емую прибыль?

Задача 3.10. Молодой российский бизнесмен предполагает постро­ить ночную дискотеку неподалеку от университета. По одному из допу­стимых проектов предприниматель может в дневное время открыть в здании дискотеки столовую для студентов и преподавателей. Другой вариант не связан с дневным обслуживанием клиентов. Представлен­ные бизнес-планы показывают, что план, связанный со столовой, может принести доход в 250 тыс. руб. Без открытия столовой бизнесмен мо­жет заработать 175 тыс. руб. Потери в случае открытия дискотеки со столовой составят 55 тыс. руб., а без столовой- 20 тыс. руб. Определи­те наиболее эффективную альтернативу на основе средней стоимост­ной ценности в качестве критерия.

Задача 3.11. Небольшая частная фирма производит косметическую продукцию для подростков. В течение месяца реализуется 15, 16 или 17 упаковок товара. От продажи каждой упаковки фирма получает 75 руб. прибыли. Косметика имеет малый срок годности, поэтому, если упаковка не продана в месячный срок, она должна быть уничтожена. Посколь­ку производство одной упаковки обходится в 115 руб., потери фирмы составляют 115 руб., если упаковка не продана к концу месяца. Веро­ятности продать 15, 16 или 17 упаковок за месяц составляют соответ­ственно 0,55; 0,1 и 0,35. Сколько упаковок косметики следует произво­дить фирме ежемесячно? Какова ожидаемая стоимостная ценность это­го решения? Сколько упаковок можно было бы производить при значи­тельном продлении срока хранения косметической продукции?

Задача 3.12. Магазин «Молоко» продает в розницу молочные про­дукты. Директор магазина должен определить, сколько бидонов смета­ны следует закупить у производителя для торговли в течение недели. Вероятности того, что спрос на сметану в течение недели будет 7, 8, 9 или 10 бидонов, равны соответственно 0,2; 0,2; 0,5 и 0,1. Покупка одного бидона сметаны обходится магазину в 70 руб., а продается сметана по цене 110 руб. за бидон. Если сметана не продается в течение недели, она портится, и магазин несет убытки. Сколько бидонов сметаны жела­тельно приобретать для продажи? Какова ожидаемая стоимостная цен­ность этого решения?

Задача 3.13. Найти наилучшие стратегии по критериям: максимакса, Вальда, Сэвиджа, Гурвица (коэффициент пессимизма равен 0,2), Гурвица применительно к матрице рисков (коэффициент пессимизма равен 0,4) для следующей платежной матрицы игры с природой (эле­менты матрицы - выигрыши):