Смекни!
smekni.com

Моделирование рисковых ситуации в экономике и бизнесе (стр. 10 из 29)

Рассмотрим процедуру принятия решения на примере следу­ющей задачи.

Задача 3.4. Руководство некоторой компании решает, созда­вать ли для выпуска новой продукции крупное производство, малое предприятие или продать патент другой фирме. Размер выигрыша, который компания может получить, зависит от благо­приятного или неблагоприятного состояния рынка (табл. 3.1).

На основе данной таблицы выигрышей (потерь) можно пост­роить дерево решений (рис. 3.1).

Рис. 3.1. Дерево решений без дополнительного обследования конъюнктуры рынка: ÿ - решение (решение принимает игрок): [*] - случай (решение "принимает" случай); // - отвергнутое решение

Таблица 3.1

Номер стратегии

Действия компании

Выигрыш, дол., при состоянии экономической среды*

благоприятном

неблаго­приятном

1

Строительство круп­ного предприятия (а1)

200 000

-180 000

2

Строительство малого предприятия (a2)

100 000

-20 000

3

Продажа патента (a3)

10 000

-10 000

• Вероятность благоприятного и неблагоприятного состояний экономичес­кой среды равна 0,5.

Процедура принятия решения заключается в вычислении для каждой вершины дерева (при движении справа налево) ожидае­мых денежных оценок, отбрасывании неперспективных ветвей и выборе ветвей, которым соответствует максимальное значение ОДО.

Определим средний ожидаемый выигрыш (ОДО):

• для вершины 1 ОДО1 = 0,5*200 000 + 0,5(-180 000) = 10 000 дол.;

• для вершины 2 ОДО2 = 0,5*100 000 + 0,5(-20 000) = 40 000 дол.;

• для вершины 3 ОДО3 = 10 000 дол.

Вывод. Наиболее целесообразно выбрать стратегию а2, т.е. строить малое предприятие, а ветви (стратегии) а1 и а3 дерева решений можно отбросить. ОДО наилучшего решения равна 40 000 дол. Следует отметить, что наличие состояния с вероят­ностями 50 % неудачи и 50 % удачи на практике часто означает, что истинные вероятности игроку скорее всего неизвестны и он всего лишь принимает такую гипотезу (так называемое предпо­ложение «fifty - fifty» - пятьдесят на пятьдесят).

Усложним рассмотренную выше задачу.

Пусть перед тем, как принимать решение о строительстве, руководство компании должно определить, заказывать ли допол­нительное исследование состояния рынка или нет, причем пре­доставляемая услуга обойдется компании в 10 000 дол. Руковод­ство понимает, что дополнительное исследование по-прежнему не способно дать точной информации, но оно поможет уточнить ожидаемые оценки конъюнктуры рынка, изменив тем самым значения вероятностей.

Относительно фирмы, которой можно заказать прогноз, изве­стно, что она способна уточнить значения вероятностей благо­приятного или неблагоприятного исхода. Возможности фирмы в виде условных вероятностей благоприятности и неблагоприят­ности рынка сбыта представлены в табл. 3.2. Например, когда фирма утверждает, что рынок благоприятный, то с вероятностью 0,78 этот прогноз оправдывается (с вероятностью 0,22 могут возникнуть неблагоприятные условия), прогноз о неблагоприят­ности рынка оправдывается с вероятностью 0,73.

Таблица 3.2

Прогноз фирмы

Фактически

Благоприятный

Неблагоприятный

Благоприятный

0,78

0,22

Неблагоприятный

0,27

0,73

Предположим, что фирма, которой заказали прогноз состоя­ния рынка, утверждает:

• ситуация будет благоприятной с вероятностью 0,45;

• ситуация будет неблагоприятной с вероятностью 0,55.

На основании дополнительных сведений можно построить новое дерево решений (рис. 3.2), где развитие событий происхо­дит от корня дерева к исходам, а расчет прибыли выполняется от конечных состояний к начальным.

Рис. 3.2. Дерево решений при дополнительном обследовании рынка (см. условные обозначения к рис. 3.1)

Анализируя дерево решений, можно сделать следующие выводы:

• необходимо проводить дополнительное исследование конъ­юнктуры рынка, поскольку это позволяет существенно уточнить принимаемое решение;

• если фирма прогнозирует благоприятную ситуацию на рынке, то целесообразно строить большое предприятие (ожида­емая максимальная прибыль 116 400 дол.), если прогноз не­благоприятный - малое (ожидаемая максимальная прибыль 12 400 дол.).

3.4.3. ОЖИДАЕМАЯ ЦЕННОСТЬ ТОЧНОЙ ИНФОРМАЦИИ

Предположим, что консультационная фирма за определенную плату готова предоставить информацию о фактической ситуации на рынке в тот момент, когда руководству компании надлежит принять решение о масштабе производства. Принятие предложе­ния зависит от соотношения между ожидаемой ценностью (ре­зультативностью) точной информации и величиной запрошенной платы за дополнительную (истинную) информацию, благодаря которой может быть откорректировано принятие решения, т.е. первоначальное действие может быть изменено.

Ожидаемая ценность точной информации о фактическом состоянии рынка равна разности между ожидаемой денежной оценкой при наличии точной информации и максимальной ожидаемой денежной оценкой при отсутствии точной инфор­мации.

Рассчитаем ожидаемую ценность точной информации для примера, в котором дополнительное обследование конъюнктуры рынка не проводится. При отсутствии точной информации, как уже было показано выше, максимальная ожидаемая денежная оценка равна:

ОДО = 0,5 * 100 000 - 0,5 * 20 000 = 40 000 дол.

Если точная информация об истинном состоянии рынка бу­дет благоприятной (ОДО =200 000 дол., см. табл. 3.1), принима­ется решение строить крупное производство; если неблагоприятной, то наиболее целесообразное решение - продажа патента (ОДО=10 000 дол.). Учитывая, что вероятности благоприятной и неблагоприятной ситуаций равны 0,5, значение ОДОт.и (ОДО точной информации) определяется выражением:

ОДОт.и = 0,5 * 200 000 + 0,5 * 10 000 = 105 000 дол.

Тогда ожидаемая ценность точной информации равна:

ОЦт.и = ОДОт.и - ОДО = 105 000 - 40 000 = 65 000 дол.

Значение ОЦт.и показывает, какую максимальную цену должна быть готова заплатить компания за точную информацию об ис­тинном состоянии рынка в тот момент, когда ей это необходимо.

3.5. ЗАДАЧИ С РЕШЕНИЯМИ

Задача 3.5. Компания «Российский сыр» - небольшой произ­водитель различных продуктов из сыра на экспорт. Один из продуктов - сырная паста - поставляется в страны ближнего зарубежья. Генеральный директор должен решить, сколько ящи­ков сырной пасты следует производить в течение месяца. Веро­ятности того, что спрос на сырную пасту в течение месяца будет 6, 7, 8 или 9 ящиков, равны соответственно 0,1; 0,3; 0,5; 0,1.

Затраты на производство одного ящика равны 45 дол. Компа­ния продает каждый ящик по цене 95 дол. Если ящик с сырной пастой не продается в течение месяца, то она портится и компа­ния не получает дохода. Сколько ящиков следует производить в течение месяца?

Решение. Пользуясь исходными данными, строим матри­цу игры. Стратегиями игрока 1 (компания «Российский сыр») являются различные показатели числа ящиков с сырной пас­той, которые ему, возможно, следует производить. Состояниями природы выступают величины спроса на аналогичное число ящиков.

Вычислим, например, показатель прибыли, которую получит производитель, если он произведет 8 ящиков, а спрос будет толь­ко на 7.

Каждый ящик продается по 95 дол. Компания продала 7, а произвела 8 ящиков. Следовательно, выручка будет 7*95, а из­держки производства 8 ящиков 8*45. Итого прибыль от указан­ного сочетания спроса и предложения будет равна: 7*95 - 8*45 = 305 дол. Аналогично производятся расчеты при других соче­таниях спроса и предложения.

В итоге получим следующую платежную матрицу в игре с природой (табл. 3.3). Как видим, наибольшая средняя ожидаемая прибыль равна 352,5 дол. Она отвечает производству 8 ящиков.

Таблица 3.3

* В скобках приведена вероятность спроса на ящики.

На практике чаще всего в подобных случаях решения принима­ются исходя из критерия максимизации средней ожидаемой прибы­ли или минимизации ожидаемых издержек. Следуя такому подходу, можно остановиться на рекомендации производить 8 ящиков, и для большинства ЛПР рекомендация была бы обоснованной. Именно так поступаем мы, когда в гл. 6 - 8 рассматриваем различные при­кладные задачи принятия решений в играх с природой.

Однако, привлекая дополнительную информацию в форме расчета среднего квадратичного отклонения как индекса риска, мы можем уточнить принятое на основе максимума прибыли или минимума издержек решение. Это в полной мере согласуется с характеристиками вариантов, представленных на рис. 1.1. Допол­нительные рекомендации могут оказаться неоднозначными, за­висимыми от склонности к риску ЛПР.

Вспомним необходимые для наших исследований формулы теории вероятностей [2, с. 109, 119]:

дисперсия случайной величины x, равна

Dx = M(x2) – (Mx)2;

среднее квадратичное отклонение

где D и М - соответственно символы дисперсии и математического ожидания.