Для агрегирования мнений экспертов принимается среднегеометрическое, вычисляемое по следующему соотношению:
(2.6)где aАij — агрегированная оценка элемента, принадлежащего i-й строке и j-му столбцу матрицы парных сравнений;
п — число матриц парных сравнений, каждая из которых составлена одним экспертом.
Логичность критерия (2.6) становится очевидной, если два равноценных эксперта указывают при сравнении объектов соответственно оценки а и 1/а, что при вычислении агрегированной оценки дает единицу и свидетельствует об эквивалентности сравниваемых объектов.
Осреднение суждений экспертов может быть осуществлено и на уровне собственных векторов матриц парных сравнений. При этом результаты будут эквивалентны тем, которые получены на уровне элементов матриц, если однородность составленных матриц достаточна и удовлетворяет условию OO ≤ 0,10. Покажем это на следующем примере.
Пусть заданы суждения двух экспертов в виде матриц попарных сравнений [A1] и [A2]:
Для этих матриц собственные векторы WАi, максимальные собственные значения λmax и оценки однородности (ИО; OO) имеют следующий вид:
для матрицы [A1]
Для матрицы [A2],
Осреднение на уровне элементов собственных векторов дает
WA= {0,184 0,117 0,699}T.
Осредняя элементы матриц [A1] [A2], получим матрицу [А3]:
Правый собственный вектор матрицы [А3] следующий:
= {0,184 0,116 0,699}T.
Сравнивая два собственных вектора Wa и определенных двумя разными способами, можно убедиться в их совпадении, даже несмотря на то, что однородность суждений эксперта, заполнившего матрицу [A2], была неудовлетворительной (OO = 0,255 > 0,10).
В достаточно ответственных задачах при оправданных затратах на экспертизу осреднение суждений экспертов проводится с учетом их квалификации ("веса"). Для определения весовых коэффициентов экспертов целесообразно использовать иерархическую структуру критериев (рис. 2.5).
Расчет агрегированной оценки в случае привлечения п экспертов, имеющих различную значимость, осуществляется по формуле
где aakij — оценка объекта, проведенная k-м экспертом с весовым коэффициентом ak; при этом а1 + а2 +...+ аn= 1.
2.5. Методы сравнения объектов относительно стандартов и копированием
Сравнение объектов относительно стандартов
Во второй модификации рассматривается метод сравнения объектов относительно стандартов. Метод попарного сравнения альтернатив не всегда может быть эффективно применен в некоторых практических ситуациях:
• эксперту может быть предложено для анализа более девяти альтернатив. В этом случае построение однородных матриц попарных сравнений становится затруднительным. Это связано с физическими ограничениями интеллекта человека;
• при добавлении новых альтернатив изменяется порядок ранее прошедших сравнение альтернатив относительно критериев качества. Нарушение порядка альтернатив нежелательно при решении ряда прикладных задач, связанных со значительными финансовыми, материальными и социальными затратами на корректировку последствий принимаемых решений или возможностью возникновения конфликтной ситуации между экспертами, готовящими и обосновывающими решения, и лицами, принимающими решения, несущими ответственность за принятые решения и их последствия;
• альтернативы могут поступать эксперту для сравнения не одновременно, а через определенные промежутки времени. Поэтому в данной ситуации не представляется возможным попарно сравнить объекты.
Для решения проблемы сравнения и оценки альтернатив в указанных ситуациях наиболее целесообразен метод сравнения альтернатив относительно стандартов. Стандарт устанавливает уровень качества объекта относительно критерия качества. Например, критерию "надежность" для объекта "автомобиль" может быть назначено три стандарта, характеризующих соответственно высокий (H — high), средний (М — medium), низкий (L — little) уровень надежности. Каждый стандарт отождествляется, как правило, с некоторым существующим на практике эталоном качества. В качестве таких эталонов принимаются объекты, аналогичные сравниваемым альтернативам. Например, для видов обеспечения банковских кредитов высокий, средний и низкий стандарты по критерию "ликвидность" могут быть отождествлены соответственно с драгоценными металлами, ценными бумагами и недвижимостью.
В иерархической структуре стандарты присваиваются элементам, имеющим непосредственную связь с альтернативами. При этом число стандартов по каждому такому элементу (критерию качества) может быть различно и определяется экспертом с учетом конкретной ситуации. По каждому стандарту экспертом устанавливается относительная степень предпочтения, которая указывает значимость стандарта для эксперта. Численное значение каждого стандарта определяется их попарным сравнением по девятибалльной шкале (см. табл. 2.1) путем обработки матрицы
Вектор приоритетов стандартов будет иметь следующий вид:
{Н= 0,625 М= 0,257 L= 0,091}T
Из вышеприведенной матрицы следует, что эксперт отдал слабое предпочтение высокому стандарту (Н) перед средним (М), а также среднему перед низким стандартом (L). В то же время предпочтение высокого стандарта (Н) перед низким (L) определено как очень сильное (оценка 7 в матрице).
Рассмотрим правила построения иерархии (рис. 2.6), учитывающей стандарты и алгоритм вычисления векторов приоритетов альтернатив.
Введем следующие обозначения:
С = {С0, Cg} — множество стандартов, включающее два подмножества, устанавливающие соответственно основную { С0 } и дополнительную { Сg } шкалы. Основная шкала включает градации С0= {Н, М, L}, где Н, М, L — соответственно высокий, средний и низкий уровень стандартов по определенному критерию. Дополнительная шкала может включать градации Cg = {НН, НМ, ML, LL}, где НН, НМ, ML, LL — соответственно очень высокое; промежуточное между высоким и средним; промежуточное между средним и низким; очень низкое значение стандартов.
Для конкретного элемента Esj, включенного в иерархию из множества С, определяется подмножество стандартов Сj, такое, что Сj Ì С, Сj Î Esj. Например, для элементов иерархии (см. рис. 2.6)
E1s и Esp определены стандарты Н, М, L, а для элемента Е2s — стандарты Н, НМ, М, ML, L. Следует отметить, что экспертом могут быть назначены различные значения для одних и тех же по наименованию стандартов, относящихся соответственно к элементам E1s и Esp.
Вычисление векторов приоритетов альтернатив относительно элементов иерархии,, учитывающей стандарты, осуществляется следующим образом.
Для каждого элемента Esj иерархии, непосредственно связанного со стандартами, устанавливается подмножество Сj Ì С. Стандарты, входящие в подмножества Сj, сформированные относительно Esj, попарно сравниваются по девятибалльной шкале предпочтений. Относительные предпочтения стандартов фиксируются в матрицах, обработка которых по итерационному алгоритму, выполняемому в соответствии с соотношениями (2.2) и (2.3), позволяет определить для них правые собственные векторы Wsj Î Esj. В собственном векторе верхний индекс указывает на принадлежность вектора уровню стандартов в иерархии.
Лицо, принимающее решение, присваивает каждой альтернативе Аi значение одного стандарта. Процедура идентификации проводится по всем элементам Esj (j =
). В результате идентификации строится матрица [А] следующего вида: