Матрицы парных сравнений
После построения иерархии устанавливается метод сравнения ее элементов. Если принимается метод попарного сравнения, то строится множество матриц парных сравнений. Для этого в иерархии выделяют элементы двух типов: элементы-«родители» и элементы-«потомки». Элементы-«потомки» воздействуют на соответствующие элементы вышестоящего уровня иерархии, являющиеся по отношению к первым элементами-«родителями». Матрицы парных сравнений строятся для всех элементов-«потомков», относящихся к соответствующему элементу-«родителю». Элементами-«родителями» могут являться элементы, принадлежащие любому иерархическому уровню, кроме последнего, на котором расположены, как правило, альтернативы. Парные сравнения проводятся в терминах доминирования одного элемента над другим. Полученные суждения выражаются в целых числах с учетом девятибалльной шкалы (см. табл. 2.1).
Заполнение квадратных матриц парных сравнений осуществляется по следующему правилу. Если элемент E1 доминирует над элементом Е2, то клетка матрицы, соответствующая строке Е1 и столбцу E2, заполняется целым числом, а клетка, соответствующая строке E2 и столбцу Е1, заполняется обратным к нему числом. Если элемент Е2 доминирует над Е1, то целое число ставится в клетку, соответствующую строке Е2 и столбцу Е1, а дробь проставляется в клетку, соответствующую строке Е1 и столбцу Е2. Если элементы Е1 и Е2 равнопредпочтительны, то в обе позиции матрицы ставятся единицы.
Для получения каждой матрицы эксперт или ЛПР выносит n(n – 1)/2 суждений (здесь п — порядок матрицы парных сравнений).
Рассмотрим в общем виде пример формирования матрицы парных сравнений.
Пусть Е1,E2, ..., Еп — множество из п элементов (альтернатив) и v1, v2, …, vn — соответственно их веса, или интенсивности. Сравним попарно вес, или интенсивность, каждого элемента с весом, или интенсивностью, любого другого элемента множества по отношению к общему для них свойству или цели (по отношению к элементу-«родителю»). В этом случае матрица парных сравнений [Е] имеет следующий вид:
Матрица парных сравнений обладает свойством обратной симметрии, т. е.
aij=1/aji,
где aij=vi / vj
При проведении попарных сравнений следует отвечать на следующие вопросы: какой из двух сравниваемых элементов важнее или имеет большее воздействие, какой более вероятен и какой предпочтительнее.
При сравнении критериев обычно спрашивают, какой из критериев более важен; при сравнении альтернатив по отношению к критерию — какая из альтернатив более предпочтительна или более вероятна.
2.2. Собственные векторы и собственные значения матриц. Оценка однородности суждений
Собственные векторы и значения матриц
Ранжирование элементов, анализируемых с использованием матрицы парных сравнений [E], осуществляется на основании главных собственных векторов, получаемых в результате обработки матриц.
Вычисление главного собственного вектора W положительной квадратной матрицы [E] проводится на основании равенства
EW=λmaxW, (2.1)
где λmax — максимальное собственное значение матрицы [Е].
Для положительной квадратной матрицы [Е] правый собственный вектор W, соответствующий максимальному собственному значению λmax, с точностью до постоянного сомножителя С можно вычислить по формуле
где е={1,1,1, ....l}Т – единичный вектор;
k = 1, 2, 3, ... — показатель степени;
С— константа;
Т — знак транспонирования.
Вычисления собственного вектора W по выражению (2.2) производятся до достижения заданной точности:
где l — номер итерации, такой, что l = 1 соответствует k = 1; l = 2, k = 2;
l = 3, k = 4 и т. д.;
ξ — допустимая погрешность.
С достаточной для практики точностью можно принять x = 0,01 независимо от порядка матрицы.
Максимальное собственное значение вычисляется по формуле:
λmax=eT[E]W
Динамические предпочтения и приоритеты
Задача прогнозирования экспертных предпочтений связана с получением оценок приоритетности альтернатив в форме зависимостей от времени. Для этого исходные экспертные оценки должны содержать информацию об изменении предпочтительности одной альтернативы перед другой на некотором временном отрезке. Следовательно, оценка предпочтительности может быть задана не константой, а функцией. Подбор таких функций можно осуществить, либо предоставив в распоряжение эксперта некоторую функциональную шкалу [2], либо путем аппроксимации экспертных оценок, полученных в различные моменты времени. Пример функциональной шкалы показан в табл. 2.2, где функции предпочтительности содержат параметры, подбор которых позволяет более или менее точно описать изменяющиеся суждения и установить область допустимых значений функций в пределах девятибалльной шкалы (см. табл. 2.1).
Таблица 2.2
Динамические суждения
Вид функции | Описание функции | Примечание |
const | Для всех t l £ const £ 9 | Постоянство предпочтений |
a1(t)+a2 | Линейная функция от t на некотором отрезке, обратная функция - гипербола | Линейное возрастание предпочтения одной альтернативы перед другой во времени |
b1ln(t+1)+b2 | Логарифмический рост | Быстрое возрастание предпочтения одной альтернативы перед другой до некоторого t, после которого следует медленное возрастание |
Экспоненциальный рост или убывание (с2<0), в последнем случае обратная величина – S-образная логистическая кривая | Медленное увеличение или уменьшение предпочтения во времени, за которым следует быстрое увеличение (уменьшение) | |
d1t2+d2t+d3 | Парабола с максимумом или минимумом в зависимости оттого, отрицательно или положительно d1. | Возрастание до максимума, а затем убывание (или наоборот) |
f1tnsin(t+f2)+f3 | Колебательная функция | Колебания предпочтений во времени с возрастающей (п>0) или убывающей (n≤0) амплитудой |
Катастрофы | Функции, имеющие разрывы, которые следует указать | Крайне резкие изменения интенсивности предпочтений |
Эти функции отражают интуитивные чувства лица, принимающего решения об изменении в тренде: постоянном, линейном, логарифмическом и экспоненциальном, возрастающем до максимума и убывающем или опускающемся до минимума и возрастающем, колебательном и, наконец, допускающем катастрофические изменения.
Для динамических задач матрица парных сравнений содержит функции времени в качестве элементов, поэтому максимальное собственное число λmax, также собственный вектор W также будут зависеть от времени, т. е.
Здесь A(t) — матрица парных сравнений объектов, содержащая информацию об изменении предпочтительности одной альтернативы перед другой на некотором промежутке времени, которая задана функцией из табл. 2.2.
Если порядок матрицы парных сравнений не превышает четырех, для уравнения (2.4) можно получить аналитическое решение [2]. Альтернативным способом является получение A(t) и W(t) численными методами. Для этого необходимо иметь в распоряжении информацию о предпочтениях экспертов за определенный период времени. При накапливании такой информации в компьютерной системе становятся возможными прогнозирование предпочтений и оценка ближайших последствий принимаемых решений.
Оценка однородности суждений
В практических задачах количественная (кардинальная) и транзитивная (порядковая) однородность (согласованность) нарушается, поскольку человеческие ощущения нельзя выразить точной формулой. Для улучшения однородности в числовых суждениях, какая бы величина aij ни была взята для сравнения i-го элемента с j-м, aij приписывается значение обратной величины, т. е. аij = 1/aij. Отсюда следует, что если один элемент в а раз предпочтительнее другого, то последний только в 1/а раз предпочтительнее первого.